<|lI!

CICS Transaction Server for z/OS

CICS Performance Guide

Version 3 Release 1

SC34-6452-09

<|lI!

CICS Transaction Server for z/OS

CICS Performance Guide

Version 3 Release 1

SC34-6452-09

Note!
Before using this information and the product it supports, be sure to read the general information under

This edition applies to Version 3 Release 1 of CICS Transaction Server for z/OS, program number 5655-M15, and
to all subsequent versions, releases, and modifications until otherwise indicated in new editions. Make sure you are
using the correct edition for the level of the product.

© Copyright IBM Corporation 1983, 2011.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface . . . XXV
What this book is about . XXV
Who this book is for. . . XXV
What you need to know to understand th|s book . . XXV
How to use this book . . XXV
Notes on terminology . . XXV
Summary of changes . XXVii
Changes for CICS Transaction Server for z/OS Versron 3 Release 1 . XXVii
Changes for CICS Transaction Server for z/OS, Version 2 Release 3 . . XXV
Changes for CICS Transaction Server for z/OS, Version 2 Release 2 . . XXViii
Changes for CICS Transaction Server for z/OS, Version 2 Release 1 . XXX
Earlier releases . . XXX
Part 1. Setting performance objectives . o1
Chapter 1. Establishing performance objectives . . 3
Terms used in performance measurement . 3
Defining performance objectives and priorities . . 4
Analyzing the current workload .5
Translating resource requirements into system objectwes . 6
Chapter 2. Gathering data for performance objectives. . .7
Gathering performance information: Requirements definition phase . .7
Gathering performance information: External design phase . .7
Gathering performance information: Internal design phase .7
Gathering performance information: Coding and testing phase . . 8
Gathering performance information: Post-development review . . . 8
Gathering performance information: Information supplied by end users. . 8
Chapter 3. Performance monitoring and review . .9
Deciding on monitoring activities and techniques . .9
Developing monitoring activities and techniques. 10
Planning the performance review process . .1
Planning your monitoring schedule. .1
Dynamic monitoring . .1
Daily monitoring 12
Weekly monitoring 12
Monthly monitoring 13
Monitoring for the future 13
Reviewing performance data . 13
Typical performance review questions 14
Confirming that the system-oriented obJectwes are reasonable 17
Anticipating and monitoring system changes and growth 17
Part 2. Tools that measure the performance of CICS . . 19
Chapter 4. Performance measurement tools: Overview . .21
Tools for obtaining CICS performance data . 22
CICS statistics . .22
The CICS monitoring faC|I|ty . .22
The sample statistics program (DFHOSTAT) . .22

© Copyright IBM Corp. 1983, 2011

CICS trace facilites .23

Other CICS data 2
Tools for obtaining operating system performance data 22
System management facility (SMF)24
Resource measurement facility (RMF)24
Generalized trace facility (GTF).26
GTF reports . . . -y
Tivoli Decision Support for z/OS G . . .28
Tools for obtaining performance data for other products used W|th CICS .. .29
ACFNTAM 24
Virtual teIecommumcatron access method (VTAM) trace e e29
VTAM storage management (SMS) trace29
VTAM tuning statistics . . . 2 |
Tivoli NetView Performance Monltor (NPM) 2 |
LISTCAT (VSAM)%8
DB monitor (IMS) .. .30
Program isolation (PI) trace . . . R [0
IMS Performance Analyzer (IMS PA) N X |
DB2 Performance Monitor forz/OS31
Teleprocessing network simulator (TPNS)32
Chapter 5. Using CICS statistics.38
Introduction to CICS statistics33
Types of statisticsdata .33
Resetting statistics counters38
Processing CICS statistics. .39
Interpreting CICS statistics . . . G 1)
Interpreting statistics domain statlst|cs 1]
Interpreting transaction manager statistics - 3|
Interpreting transaction class (TRANCLASS) statlst|cs - 4
Interpreting dispatcher statistics.4
TCB statistics . . . e e e e e s
Dispatcher TCB Pool statlstlcs and JVMs < ol
Interpreting recovery manager statistics.43
Interpreting enqueue statistics43
Interpreting storage manager statistics43
Interpreting loader statistics . . . ey
Interpreting temporary storage statlstlcs O 7
Interpreting transient data statistics45
Interpreting VTAM statistics .45
Interpreting dump statistics .47
Interpreting transaction statistics47
Interpreting program statistics47
Interpreting file statistics .47
Interpreting LSRpool statistics . . . e e 48
Interpreting journalname and log stream statlstlcs e
Interpreting CICS DB2 statistics.50
Interpreting JVM statistics. .50
JVM pool statistics .. .50
JVM profile statistics. .51
JVM program statistics P 24
Interpreting CorbaServer, DJAR and enterpnse bean stat|st|cs N 74
Interpreting requestmodel statistics52
Interpreting terminal statistics . . . & 74
Interpreting ISC/IRC system and mode entry stat|st|cs53
Summary connection type for statistics fields.53

iV CICS TS for z/0S: CICS Performance Guide

General guidance for interpreting ISC/IRC statistics 54

Are enough sessions defined?5b5
Is the balance of contention winners to contentlon Iosers correct’?56
Is there conflicting usage of APPC modegroups? . . . Y4
What if there are unusually high numbers in the statistics report’?58
Interpreting ISC/IRC attach time entry statisticsh9
Interpreting front end programming interface (FEPI) statlstlcs60
Interpreting user domain statistiecs.60
Interpreting Web and TCP/IP statistics61
Interpreting server statistics . . . P ¢ 72
Shared temporary storage queue server statlst|cs e ¢ 724
Coupling facility data tables server statistics62
Named counter sequence number server statistics.62
Chapter 6. The CICS monitoring facility63
The classes of monitoring data: Overview63
Performance class data. .63
Exception class data. . . . e o 74
Transaction resource class data Coe65
CICS Monitoring Facility (CMF) and the MVS workload manager65
Event monitoring points. . . . e65
Application naming event momtonng pomts B <74
The monitoring control table (MCT)67
DFHMCT TYPE=INITIAL .67
DFHMCT TYPE=EMP .67
DFHMCT TYPE=RECORD068
Controlling CICS monitoring e08
Processing CICS monitoring facility output N o1 |
Interpreting CICS monitoring.69
Clocks and time stamps .70
Notes on the performancedata.71
Transaction timing fieds7
Response time . . . Y 24
Transaction dispatch tlme and CPU t|me Y £<
Wait (suspend) times .73
Program load time . . . Y £ <
RMI elapsed and suspend t|me Y £ <
JVM elapsed time and suspend time.79
Syncpoint elapsed time. .79
Storage occupancy counts80
Program storage ... 8
Performance class data. . . . e e83
Performance data in group DFHCBTS e83
Performance data in group DFHCHNL85
Performance data in group DFHCICS85
Performance data in group DFHDATA87
Performance data in group DFHDEST 88
Performance data in group DFHDOCH89
Performance data in group DFHEJBS89
Performance data in group DFHFEPI.89
Performance data in group DFHFILE.90
Performance data in group DFHJOUR92
Performance data in group DFHMAPP92
Performance data in group DFHPROG93
Performance data in group DFHRMI95
Performance data in group DFHSOCK96

Contents V

Vi

Performance data in group DFHSTOR .
Performance data in group DFHSYNC.
Performance data in group DFHTASK .
Performance data in group DFHTEMP .
Performance data in group DFHTERM.
Performance data in group DFHWEBB.
Exception class data .o
Exception data field descrrptrons
Transaction resource class data .
Transaction resource monitoring data f|eld descrrptrons

Chapter 7. CICS Performance Analyzer for z/0S (CICS PA) .

The CICS PA dialog . .
Using CICS PA to analyze CICS performance .
Performance List report . Co

Performance List Extended report
Performance Summary report .
Performance Totals report

Wait Analysis report

Cross-System Work report .
Exception List report

Exception Summary report .
Transaction Resource Usage reports
DB2 report . . .

WebSphere MQ report

System Logger report . .

The CICS PA Historical Database (HDB)

Chapter 8. Tivoli Decision Support for z/OS .

Using Tivoli Decision Support for z/OS to report on CICS performance

Monitoring response time

Monitoring processor and storage use .
Monitoring volumes and throughput .
Combining CICS and DB2 performance data
Monitoring exception and incident data
Unit-of-work reporting .

Monitoring availability . .

CICS workload activity reporting .

Chapter 9. Managing Workloads .
MVS workload manager .
Terms used in MVS workload management
Span of MVS workload manager operation . .
Defining performance goals for MVS Workload Manager .
Determining CICS response times before defining goals .
Example of using SRVCLASS parameter of IEAICSxx .
Setting up service definitions for MVS Workload Manager
Using a service definition base
Defining service policies .
Defining workloads .
Defining service classes .
Defining classification rules .
Using MVS workload manager. .
Implementing MVS workload management .

Matching CICS performance parameters to service poIrcres .

Activating CICS support for MVS workload manager

CICS TS for z/OS: CICS Performance Guide

. 97
. 100
. 101
. 115
. 116
. 119
. 120
121
. 126
. 129

. 135
. 136
. 138
. 140
. 140
141
. 142
. 144
. 146
. 147
. 147
. 148
. 149
. 150
. 152
. 154

. 157
. 159
. 159
. 160
. 160
. 161
. 162
. 162
. 163
. 163

. 167
. 167
. 168
. 169
. 170
. 170
. 170
171
171
. 172
. 172
. 172
. 173
. 175
. 175
. 176
. 176

CICSPlex SM workload management177

Chapter 10. Understanding and using RMF workload manager data . . . 179
Using CICS monitoring information withRMF 179
CICS usage of RMF transaction reporting 179
CICS monitoring facility and the MVS workload managers use of
SYSEVENT. N V4
ERBRMF member for Monltor I session180
ERBRMF member for Monitor Il session 180
RMF operations .180
Terms used in RMF reports.o 180
The response time breakdown in percentage sectlon N < 0]
The state section . . . P £ < 7
Interpreting the RMF workload act|V|ty data T < 724
RMF reporting intervals 183
RMF report example: very large percentages in the response tlme breakdown 185
Possible explanations .185
Possible actions . . . A |74
RMF report example: response t|me breakdown data is aII zero 187
Possible explanations .187
Possible actions 188
RMF report example: executlon tlme greater than response t|me 188
Possible explanaton . 188
Possible actions 188
RMF report example: large SWITCH LOCAL T|me in CICS executlon phase 188
Possible explanations .189
Possible actions . . . 189
RMF report example: fewer ended transactlons wrth mcreased response tlmes 189
Possible explanation .189
Possible action 190
An explanation of the drfference between a DFHSTUP transactlon report and
an RMF workload report .19
Part 3. Analyzing the performance of a CICS system 193
Chapter 11. CICS performance analysis techniques. 195
What to investigate when analyzing performance. 197
Information sources to help analyze performance. 198
Establishing a measurement and evaluationplan. 198
Assessing the performance of your system200
System conditions .200
Application conditons .201
Methods of performance analysis. . . . =0 B
Performance analysis: full-load measurement e e e e 202
CICS auxiliary trace .202
RMF 210 2
Comparison charts Coe . e208
Performance analysis: single- transactlon measurement e =(0 1)
CICS auxiliary trace .206
Chapter 12. Identifying CICS constraints207
Observing response times .207
Identifying storage stress. .209
Controlling storage stress209
Short-on-storage conditon210
Purgingoftasks .210

Contents Vi

CICS hang . .21
Identifying paging problems .21
Program loading and paging . 212
Detecting storage violation . . 212
Dealing with limit conditions. . . 213
Identifying performance constraints . . 214
Hardware constraints . . 214
Software constraints . 215
Dealing with resource contention . . 216
Solutions for poor response time . . 216
Symptoms and solutions for particular resource content|on problems . 217
Chapter 13. Tuning your CICS system . . 221
Determining acceptable tuning trade-offs . . 221
Making tuning changes to your system . 221
Reviewing the results of tuning . 222
Part 4. Improving the performance of a CICS system . . 223
Chapter 14. Performance checklists . . 225
Input/output contention performance checklist . . 225
Virtual storage above and below 16MB line performance checkhst . 226
Real storage performance checklist . . 227
Processor cycles performance checklist . . 228
Chapter 15. MVS and DASD: improving performance . . 231
Reducing MVS common system area requirements . . 232
Splitting online systems to improve availability . . 232
Limitations . . . 233
Recommendations . . 233
Making CICS nonswappable . 233
How implemented . 234
Limitations . . 234
How monitored . . 234
Increasing the CICS reg|on size . . 234
How implemented . 234
How monitored . 235
Using job initiators . . 235
Effects . 235
Limitations . . 236
How implemented . 236
How monitored . . 236
Tuning the region exit mterval (ICV) . 236
Main effect . . 236
Secondary effects . 237
Where useful . . 237
Limitations . . . 237
Recommendations . . 237
How implemented . 238
How monitored 238
Using LLA (MVS library IookaS|de) . 238
Effects of LLACOPY .o . 239
The SIT Parameter LLACOPY . . 240
DASD tuning . . . 240
Reducing the number of I/O operahons . 240
Tuning the 1/O operations . 241

viii

CICS TS for z/0S: CICS Performance Guide

Balancing 1/O operations .

Chapter 16. Networking and VTAM: improving performance

Setting the size of the terminal mput/output area (TYPETERM IOAREALEN or

TCT TIOAL).
Effects
Limitations . .
Recommendations .
How implemented
How monitored
Setting the size of receive- any |nput areas (RAMAX)
Effects ..
Where useful .
Limitations . .
Recommendations .
How implemented
How monitored .
Setting the size of the receive- any pool (RAPOOL)
Effects .o
Where useful .
Limitations . .
Recommendations .
How implemented
How monitored
Using the MVS high performance opt|on (HPO) W|th VTAM .
Effects .
Limitations . .
Recommendations .
How implemented
How monitored

. 241

. 243

. 243

. 243
. 243
. 244
. 245
. 245
. 245
. 245
. 245
. 245
. 246
. 246
. 246
. 246
. 246
. 247
. 247
. 247
. 248
. 248
. 248
. 248
. 248
. 249
. 249

Adjusting the number of transm|SS|ons in SNA transactlon flows (MSGINTEG

and ONEWTE)
Effects

Where useful .
Limitations .
How implemented
How monitored

Using SNA chaining to segment Iarge messages (TYPETERM RECEIVESIZE

BUILDCHAIN, and SENDSIZE)
Effects e e
Where useful .
Limitations . .
Recommendations .
How implemented
How monitored
Limiting the number of concurrent Iogon/logoff requests (OPNDLIM)
Effects
Where useful .
Limitations . .
Recommendations .
How implemented
How monitored
Adjusting the terminal scan delay (ICVTSD)
Effects . .
Where useful .
Limitations .

. 249

. 249
. 249
. 250
. 250
. 250

. 250

. 250

. 251
. 251
. 251
. 251
. 251
. 252
. 252
. 252
. 252
. 252
. 252
. 253
. 253
. 253
. 253
. 254
. 254

Contents

ix

Recommendations .
How implemented
How monitored .
Compressing output termmal data streams .
Limitations . .
Recommendations .
How implemented
How monitored
Tuning automatic |nstallat|on of termmals
Maximum concurrent autoinstalls (AIQMAX).
The restart delay parameter (AIRDELAY).
The delete delay parameter (AILDELAY)
Effects . .o
Recommendahons .
How monitored

Chapter 17. CICS Dispatcher: Performance and Tunlng .
MAXOPENTCBS. .o

How dispatcher selects an L8 or L9 mode TCB

Setting MAXOPENTCBS.
MAXSSLTCBS .

Chapter 18. CICS Web support: performance and tuning.
Storage requirements for CICS Web support

Priorities for CICS Web support transactions (CWXN CWXU CWBA) .

Relative performance of CICS Web support response methods.
Managing the performance of Secure Sockets Layer support
Monitoring the SSL pool . e e

Chapter 19. VSAM and file control: improving performance
VSAM tuning: general objectives . .
Local shared resources (LSR) or Nonshared resources (NSR) .
Number of strings
Size of control intervals .
Number of buffers (NSR).
Number of buffers (LSR) .
CICS calculation of LSR pool parameters
Data set name sharing
AIX considerations .
Situations that cause extra phy3|cal I/O
Other VSAM definition parameters . . .
Defining VSAM resource usage (LSRPOOL)
Effects . .
Where useful .
Limitations . .
Recommendations .

How implemented
Defining VSAM buffer allocatlons for NSR (INDEXBUFFERS and
DATABUFFERS) . C e e

Effects
Where useful .
Limitations . .
Recommendations .
How implemented
How monitored . .
Defining VSAM buffer aIIocatlons for LSR

X CICS TS for z/OS: CICS Performance Guide

. 254
. 255
. 255
. 255
. 255
. 255
. 256
. 256
. 256
. 256
. 256
. 257
. 258
. 258
. 259

. 261
. 261
. 261
. 262
. 263

. 265
. 265
. 267
. 267
. 268
. 269

. 271
. 27
. 271
. 273
. 275
. 276
. 276
. 277
. 278
. 279
. 279
. 280
. 280
. 280
. 280
. 280
. 280
. 280

. 281
. 281
. 281
. 281
. 281
. 281
. 281
. 282

Effects

Where useful .

Recommendations .

How implemented

How monitored . . .
Defining VSAM stnng settmgs for NSR (STRINGS) .

Effects .o

Where useful .

Limitations . .

Recommendations .

How implemented

How monitored . .
Defining VSAM stnng settmgs for LSR (STRINGS) .

Effects

Where useful .

Limitations . .

Recommendations .

How implemented

How monitored

Specifying maximum keylength for LSR (KEYLENGTH and MAXKEYLENGTH)

Effects

Where useful .
Recommendations .
How implemented . . .

Specifying resource percentrle for LSR (SHARELIMIT)
Effects
Where useful .

Recommendations .
How implemented ..

Using VSAM local shared resources (LSR)
Effects
Where useful .

Recommendations .
How implemented
How monitored

Using Hiperspace buffers
Effects
Limitations . .
Recommendations .

How implemented .o

Permitting VSAM subtasklng (SUBTSKS 1)
Effects . . Coe e
Where useful .

Limitations . .
Recommendations .

How implemented

How monitored . .

Using data tables to |mprove performance
Effects ..
Recommendations .

How implemented
How monitored

Using coupling facility data tables to galn performance beneflts

Locking model.
Contention model
Effects

. 282
. 282
. 282
. 282
. 282
. 282
. 282
. 283
. 283
. 283
. 283
. 283
. 283
. 283
. 284
. 284
. 284
. 284

. 284
284

. 284

. 284
. 285
. 285
. 285
. 285
. 285
. 285
. 285
. 285
. 285
. 285
. 285
. 286
. 286
. 286
. 286
. 286
. 286
. 287
. 287
. 287
. 287
. 287
. 288
. 288
. 288
. 288
. 289
. 289
. 289
. 290
. 290
. 291
. 292
. 292

Contents

Xi

Xii

Recommendations .
How implemented
How monitored
CFDT statistics
RMF reports
Performance aspects of VSAM record Ievel sharlng (RLS)
Effects
How |mplemented
How monitored

Chapter 20. Java applications using a Java virtual machine (JVM):
improving performance . .
Tuning storage for individual JVMs .
Using the output from garbage collection to tune storage for JVMs
Sample storage settings for JVMs running enterprise beans .
Tuning Language Environment enclave storage for JVMs.
Tuning the z/OS shared library region .
Managing your JVM pool for performance
Examining the CPU time used by your JVMs
Calculating the maximum number of JVMs for which storage can be
provided .
Choosing and settlng an appropnate MAXJVMTCBS I|m|t
Dealing with warnings about MVS storage constraints .
Dealing with excessive mismatches and steals.
Tuning for enterprise beans.
Customizing DFHEJOS for your ant|C|pated stateful enterprlse bean usage
Enterprise beans that are involved in client-controlled OTS (object
transaction service) transactions .
Enterprise bean methods that require multlple request processors

Chapter 21. Database management for performance
Setting DBCTL minimum threads (MINTHRD) .
Effects

Where useful .
Limitations .
Implementation

How monitored . . .

Setting DBCTL maximum threads (MAXTHRD)
Effects
Where useful .

Limitations .
Implementation
How monitored . . .

Defining DBCTL DEDB parameters (CNBA FPBUF FPBOF)
Where useful .
Recommendations .

How implemented
How monitored .

Tuning the CICS DB2 attachment faC|I|ty Introductron .
How monitored . .

Specifying THREADWAIT for the CICS DBZ attachment facrllty
Effects
Where useful .

How implemented
How monitored

CICS TS for z/OS: CICS Performance Guide

. 293
. 293
. 294
. 294
. 295
. 296
. 297
. 298
. 298

. 301
. 302
. 304
. 310
. 310
. 313
. 314
. 315

. 321
. 324
. 324
. 325
. 326

327

. 327
. 327

. 329
. 329
. 329
. 329
. 329
. 329
. 330
. 330
. 330
. 330
. 330
. 330
. 330
. 330
. 331
. 331
. 332
. 332
. 332
. 333
. 334
. 334
. 334
. 334
. 334

Setting TCBLIMIT, THREADLIMIT, CTHREAD and MAXOPENTCBS for the

CICS DB2 attachment facility
Effect . o
Limitations . .

Recommendations .
How monitored . .

Specifying PRIORITY for the CICS DB2 attachment faC|I|ty
Effects
Where useful .

Limitations . .

Recommendations .

How implemented

How monitored .

Selecting authorization IDs for performance and mamtenance .
Performance considerations for authorization IDs .
Maintenance considerations for authorization IDs .

Chapter 22. Logging and journaling: performance considerations .

Monitoring the logger environment .
Performance implications of average block3|ze
Performance implications of the number of log streams in the couphng
structure
AVGBUFSIZE and MAXBUFSIZE parameters .
Recommendations . Coe e
Limitations .
How implemented
How monitored

faC|I|ty

Setting LOWOFFLOAD and HIGHOFFLOAD parameters on Iog stream

definition . .
Recommendations .
How implemented
How monitored

Tuning the size of staging data sets
Recommendations .

Setting the activity keypoint frequency (AKPFREQ)
Limitations . .o e
Recommendations .

How implemented
How monitored

Specifying the log defer mterval (LGDFINT)
Recommendations . Coe
How implemented
How monitored

Tuning for DASD-only Iogglng

Chapter 23. Virtual and real storage: performance considerations .

Tuning CICS virtual storage. .
Splitting online systems: virtual storage
Where useful .
Limitations . .
Recommendations .
How implemented
Setting the maximum task speC|f|cat|on (MXT)
Effects
Limitations . .
Recommendations .

Contents

. 335
. 335
. 335
. 336
. 336
. 336
. 336
. 336
. 336
. 337
. 337
. 337
. 337
. 337
. 338

. 339
. 340
. 341

. 342
. 342
. 343
. 343
. 344
. 344

. 344
. 345
. 346
. 346
. 346
. 347
. 347
. 347
. 348
. 349
. 349
. 349
. 349
. 350
. 350
. 350

. 353
. 353
. 353
. 354
. 355
. 355
. 356
. 357
. 357
. 357
. 357

xiii

How implemented
How monitored

Using transaction classes (MAXACTIVE) to control transactlons

Effects

Limitations . .
Recommendations .
How implemented
How monitored

Specifying a transaction class purge threshold (PURGETHRESH)

Effects
Where useful .
Recommendations .
How implemented
How monitored
Prioritizing tasks .
Effects
Where useful .
Limitations . .
Recommendations .
How implemented
How monitored
Adjusting the limits for dynamlc storage areas .
Extended dynamic storage areas.
Dynamic storage areas (below the line) . . .
Using modules in the link pack area (LPA/ELPA) .
Effects
Limitations . .
Recommendations .
How implemented
Choosing aligned or unallgned maps
Effects
Limitations .
How implemented
How monitored . .
Defining programs as reS|dent nonre3|dent or tranS|ent .
Effects .
Recommendations .
How monitored
Putting application programs above the 16MB I|ne
Effects
Where useful .
Limitations .
How implemented
Allocating real storage when usmg transactlon |solat|on
Limiting the expansion of subpool 229 using VTAM pacing
Recommendations . .o . . .
How implemented

Chapter 24. MRO and ISC: performance considerations .

CICS intercommunication facilities and performance: overview .

Limitations .
How implemented
How monitored
Managing queues for mtersystems sessions.
Relevant statistics
Ways of approaching the problem and recommendatlons

CICS TS for z/0S: CICS Performance Guide

. 357
. 357
. 358
. 358
. 358
. 358
. 358
. 359
. 359
. 359
. 359
. 360
. 360
. 360
. 361
. 361
. 361
. 362
. 362
. 363
. 363
. 363
. 364
. 365
. 366
. 366
. 367
. 367
. 367
. 367
. 367
. 368
. 368
. 368
. 368
. 368
. 369
. 369
. 370
. 370
. 370
. 370
. 370
. 370
. 371
. 372
. 372

. 373
. 373
. 374
. 374
. 374
. 375
. 375
. 376

Monitoring the settings
Using transaction classes DFHTCLSX and DFHTCLQZ to control storage use
Effects
How |mplemented
Controlling the length of the term|nal mput/output area (SESSIONS
IOAREALEN) for MRO sessions . e e
Effects Ce e
Where useful .
Limitations . .
Recommendations .
How implemented . . .
Batching requests (MROBTCH)
Effects Coe
Recommendations .

Extending the life of mirror transactlons (MROLRM and MROFSE)
Controlling the deletion of shipped terminal definitions (DSHIPINT and
DSHIPIDL) .

Effects

Where useful .
Limitations . .
Recommendations .
How implemented
How monitored

Chapter 25. Programming: performance considerations .
Using the device-dependent suffix option for BMS map suffixing
Effects .
Recommendation
How implemented
How monitored .
Using the PL/I shared I|brary
How implemented
How monitored
Tuning with Language Enwronment .
Minimizing GETMAIN and FREEMAIN act|V|ty
Language Environment run time options for AMODE (24) programs
Using DLLs in C++ .
Minimizing the time Language Envrronment spends wrrtrng dump output to
transient data queue CESE .

Chapter 26. CICS facilities: performance considerations .
Tuning the use of CICS temporary storage (TS) .

Effects .

Limitations . .

Recommendations .

How implemented

How monitored .

Allocation of temporary storage
Using temporary storage data sharing to |mprove performance
Optimizing the performance of the CICS transient data (TD) facrlrty

Recovery options e e e

Intrapartition transient data consrderatlons

Extrapartition transient data considerations .

Limitations .

How implemented

Recommendations .

Contents

. 376

377

. 377
. 377

. 377
. 377
. 378
. 378
. 378
. 378
. 378
. 378
. 379
. 379

. 380
. 380
. 380
. 381
. 381
. 381
. 382

. 383
. 383
. 383
. 383
. 383
. 383
. 384
. 384
. 384
. 384
. 384
. 386
. 386

. 387

. 389
. 389
. 389
. 390
. 390
. 392
. 392
. 393
. 393
. 394
. 394
. 395
. 397
. 398
. 398
. 398

XV

How monitored . 398
Using Global ENQ/DEQ to |mprove performance . 398
How implemented . Coe . 399
Recommendations . . 399
CICS monitoring facility: performance consrderatlons . 399
Limitations . . . 399
Recommendations . . 399
How implemented . 400
How monitored . . 400
CICS trace: performance consrderatrons . . 400
Effects . 400
Limitations . . . 400
Recommendations . . 401
How implemented . 401
How monitored . 401
CICS recovery: performance conS|derat|ons . 401
Limitations . . 402
Recommendation . 402
How implemented . 402
How monitored . . 402
CICS security: performance consrderatlons . . 402
Effects . 402
Limitations . . . 402
Recommendations . . 402
How implemented . 402
How monitored . 403
CICS storage protection facrlltles performance consrderatrons . 403
Storage protect . 403
Transaction isolation . 403
Command protection . 403
Recommendation . . 403
Transaction isolation and appllcatlons . . 403
CICS business transaction services: performance consrderatlons . 404
Effects . . 404
Recommendations . . 404
How implemented . 404
Chapter 27. Improving CICS startup and normal shutdown time . . 407
Checking startup procedures for performance . . . 407
Autoinstall: performance considerations at startup and shutdown . . 409
Using MVS automatic restart management for faster restart . . 409
Part 5. Appendixes . . 411
Appendix A. CICS statistics tables . 413
Autoinstall statistics. . 415
Autoinstall: Global statrstrcs LocaI defrnrtron . 415
Autoinstall: Global statistics - Remote definitions - shlpped termlnal statlstlcs 416
Autoinstall: Summary global statistics . . 419
CICS DB2 statistics. 420
CICS DB2: Global statrstrcs . 420
CICS DB2: Resource statistics . 427
CICS DB2: Summary global statistics . . 431
CICS DB2: Summary resource statistics . . 434
CorbaServer statistics . . 436
CorbaServer: Resource statlstrcs . 436

XVi

CICS TS for z/0S: CICS Performance Guide

CorbaServer: Summary resource statistics .
DBCTL session termination statistics
DBCTL session termination: Global statlstlcs
DBCTL session termination: Summary global statlstlcs
Dispatcher domain statistics
Dispatcher domain: Global statlstlcs
Dispatcher domain: TCB Mode statistics .
Dispatcher domain: TCB Pool statistics
Dispatcher domain: Summary global statistics .
Dispatcher domain: Summary TCB Mode statistics .
Dispatcher domain: Summary TCB Pool statistics.
Dump domain statistics
System dump statistics
Dump domain: Global statlstlcs system dump
Dump domain: Resource statistics - system dump
Dump domain: Summary global statistics - system dump .
Dump domain: Summary resource statistics - system dump .
Transaction dump statistics . .
Dump domain: Global statistics - transactlon dump .
Dump domain: Resource statistics - transaction dump .
Dump domain: Summary global statistics - transaction dump
Dump domain: Summary resource statistics - transaction dump
Enqueue domain statistics .
Enqueue domain: Global statlstlcs enqueue requests
Enqueue domain: Summary global statistics.
Enterprise bean statistics. .
Enterprise beans: Resource statlstlcs . .
Enterprise beans: Summary resource statistics.
Front end programming interface (FEPI) statistics
FEPI: Connection statistics .
FEPI: Pool statistics
FEPI: Target statistics .
FEPI: Unsolicited connection statlstlcs
FEPI: Unsolicited pool statistics
FEPI: Unsolicited target statistics.
FEPI: Summary connection statistics
FEPI: Summary pool statistics .
FEPI: Summary target statistics .
File control statistics
Files: Resource statistics - resource |nformat|on
Files: Resource statistics - requests information
Files: Resource statistics - data table requests |nformat|on
Files: Resource statistics - performance information .
Files: Summary statistics - resource information
Files: Summary statistics - requests information
Files: Summary statistics - data table requests mformatlon
Files: Summary statistics - performance information .
ISC/IRC system and mode entry statistics
System entry .
Mode entry . .
ISC/IRC attach time entry statlstlcs . .
ISC/IRC attach time: Resource statistics . .
ISC/IRC attach time: Summary resource statistics
Journalname statistics .
Journalname: Resource statlstlcs .
Journalname: Summary resource statistics .

Contents

. 438
. 439
. 440
. 441
. 442
. 442
. 445
. 448
. 451
. 452
. 454
. 455
. 455
. 455
. 456
. 457
. 457
. 458
. 458
. 459
. 459
. 460
. 460
. 460
. 463
. 464
. 464
. 465
. 465
. 465
. 466
. 468
. 469
. 469
. 469
. 469
. 469
. 470
. 470
. 471
. 473
. 475
. 478
. 479
. 480
. 481
. 483
. 483
. 484
. 495
. 500
. 500
. 501
. 502
. 502
. 503

Xvii

xviii

JVM Pool statistics

JVM Pool: Global statlstlcs .

JVM Pool: Summary global statlstlcs
JVM profile statistics .

JVM profiles: Resource statlstlcs

JVM profiles: Summary resource statistics
JVM program statistics .

JVM programs: Resource statlst|cs . .

JVM programs: Summary resource statistics
Logstream statistics.

Logstream: Global StatIStICS

Logstream: Resource statistics

Logstream: Request statistics .

Logstream: Summary global statistics .

Logstream: Summary resource statistics .

Logstream: Summary request statistics
LSRpool statistics

LSRpool:
LSRpool:
LSRpool:
LSRpool:
LSRpool:
LSRpool:
LSRpool:
LSRpool:
LSRpool:
LSRpool:
LSRpool:
LSRpool:
LSRpool:
LSRpool:
LSRpool:
LSRpool:

Resource stat|st|cs for each LSRpooI

Data buffer statistics.

Hiperspace data buffer statlstlcs

Index buffer statistics

Hiperspace index buffer statlstlcs

Buffer statistics. .

Hiperspace buffer statlstlcs .

Summary resource statistics for each LSRpooI
Summary data buffer statistics .

Summary Hiperspace data buffer statlstlcs
Summary index buffer statistics. .
Summary Hiperspace index buffer stat|st|cs .
Summary buffer statistics .

Summary Hiperspace buffer statlstlcs

Files — Resource statistics for each file specmed to use the pool
Files — Summary resource statistics.

Monitoring domain statistics.

Monitoring domain: Global statlstlcs .

Monitoring domain: Summary global statistics .
Program autoinstall statistics

Program autoinstall: Global statlst|cs

Program autoinstall: Summary global stat|st|cs
Loader domain statistics . .

Loader domain: Global statistics .

Loader domain: Summary global stat|st|cs
PIPELINE definition statistics .

PIPELINE definitions: Resource statlstlcs .

PIPELINE definitions: Summary resource statistics .
Program statistics

Programs: Resource statlstlcs

Programs: Summary resource statistics
Recovery manager statistics

Recovery manager: Global statlst|cs

Recovery manager: Summary global stat|st|cs
Requestmodel statistics . .

Requestmodel: Resource statlstlcs . .

Requestmodel: Summary resource statistics
Statistics domain statistics .

Statistics domain: Global statlstlcs

CICS TS for z/OS: CICS Performance Guide

. 504
. 504
. 505
. 506
. 506
. 509
. 510
. 510
. 511
. 511
. 511
. 512
. 513
. 515
. 515
. 516
. 517
. 518
. 520
. 521
. 522
. 522
. 523
. 525
. 525
. 526
. 526
. 527
. 527
. 528
. 529

529

. 530
. 531
. 531
. 533
. 533
. 533
. 534
. 534
. 534
. 542
. 546
. 547
. 547
. 548
. 548
. 550
. 551
. 551
. 555
. 557
. 558
. 559
. 560
. 560

Statistics domain: Summary global statistics.

Storage manager statistics . .
Storage manager: Domain subpools statlstlcs .
Storage manager: Global statistics .

Storage manager: Subspace statistics .
Storage manager: Dynamic storage areas statlstlcs
Storage manager: Task subpools statistics .
Storage manager: Summary domain subpools statlst|cs
Storage manager: Summary global statistics
Storage manager: Summary subspace statistics . .
Storage manager: Summary dynamic storage areas stat|st|cs .
Storage manager: Summary task subpools statistics
Table manager statistics . .
Table manager: Global statistics .
Table manager: Summary global statlstlcs
TCP/IP global and TCP/IP Service statistics.
TCP/IP: Global statistics . .o
TCP/IP: Summary global statlst|cs

TCP/IP Services statistics
TCP/IP Services: Resource stat|st|cs
TCP/IP Services: Request statistics .

TCP/IP Services: Summary resource statlstlcs
TCP/IP Services: Summary request statistics

Temporary storage statistics
Temporary storage: Global statlstlcs .
Temporary storage: Summary global statistics .

Terminal control statistics.

Terminal control: Resource statlstlcs .
Terminal control: Summary resource statistics .
Transaction class (TCLASS) statistics .
Transaction class: Resource statistics . .
Transaction class: Summary resource statistics
Transaction statistics .
Transaction manager: Global statlstlcs
Transactions: Resource statistics .
Transactions: Resource statistics - resource mformatlon
Transactions: Resource statistics - integrity information
Transaction manager: Summary global statistics .
Transactions: Summary resource statistics - resource |nformat|on
Transactions: Summary resource statistics - integrity information .
Transient data statistics .
Transient data: Global statlsncs
Transient data: Resource statistics .
Transient data: Summary global statistics.
Transient data: Summary resource statistics.
URIMAP definition statistics.
URIMAP definitions: Global statlstlcs
URIMAP definitions: Resource statistics .
URIMAP definitions: Summary global statistics.
URIMAP definitions: Summary resource statistics.
User domain statistics .
User domain: Global stat|st|cs .
User domain: Summary global statistics .
VTAM statistics . . .
VTAM: Global statlstlcs
VTAM: Summary global statlstlcs

Contents

. 562
. 563
. 564
. 566
. 568
. 568
. 572
. 574
. 575
. 576
. 576
. 578
. 578
. 578
. 579
. 579
. 580
. 582
. 583
. 583
. 585
. 587
. 587
. 588
. 588
. 593
. 595
. 595
. 598
. 600
. 600
. 603
. 604
. 604
. 605
. 606
. 608
. 610
. 611
. 612
. 614
. 614
. 619
. 624
. 626
. 628
. 628
. 630
. 633
. 634
. 636
. 636
. 637
. 637
. 637
. 639

Xix

Web service statistics Y o 7210

Web services: Resource statlstlcs Co640

Web services: Summary resource statlsncs e o
Appendix B. Shared temporary storage queue server statistics 643
Shared TS queue server: coupling facility statistics 643
Shared TS queue server: buffer pool statistics. 644
Shared TS queue server: storage statistics 645
Appendix C. Coupling facility data tables server statistics 647
Coupling facility data tables: list structure statistics 647
Coupling facility data tables: table accesses statistics 649
Coupling facility data tables: request statistics 650
Coupling facility data tables: storage statistics 651
Appendix D. Named counter sequence number server 653
Named counter sequence number server statistics 653
Named counter server: storage statistiecs 654
Appendix E. The sample statistics program, DFHOSTAT 657
Information on DFHOSTAT N o 1574
The DFHOSTAT reports .660
System Status Report. .0664
Transaction Manager Report669
Dispatcher Report . . . T o Y 4
Dispatcher TCB Modes Report e < Y £
Dispatcher TCB Pools Report#680
Dispatcher MVS TCBs Report.684
Storage Reports N 121
Storage - Domain Subpools N o 1°]¢]
Loader and Program Storage Report699
Storage - Program Subpools704
Transaction Classes Report.704
Transactions Report .706
Transaction Totals Report .709
Programs Report. ...
Program Totals Report. .714
DFHRPL Analysis Report. .716
Programs by DSAand LPAReport718
Temporary Storage Report . . . A 1)
Temporary Storage Main — Storage Subpools Report Y 22
Temporary Storage Queues Report726
Tsqueue Totals Report. . . . e e e e s T27
Temporary Storage Queues by Shared TS Pool Report e e e e T27
Temporary Storage Models Report C e e e e T29
Transient Data Report. .730
Transient Data Queues Report73
Transient Data Queue Totals Report73
Journalnames Report .735
Logstreams Report . . . Y £¢ 14
Autoinstall and VTAM Report N
Connections and Modenames Report 747
TCP/IP Report .. .75
TCP/IP Services Report .75
URIMAPs Global Report .757
URIMAPs Report .759

XX CICS TS for z/OS: CICS Performance Guide

Virtual Hosts Report

PIPELINEs Report .

Web Services Report .

Document Templates Report

JVM Pool and Class Cache Report .
JVMs Report . Coe

JVM Profiles Report

JVM Programs Report. .

EJB System Data Sets Report.
CorbaServers Report .

CorbaServers and DJARs Report
CorbaServer and DJAR Totals Report .
DJARs and Enterprise Beans Report .
DJAR and Enterprise Bean Totals Report.
Requestmodel Report . Coe
LSRpools Report.

Files Report .

File Requests Report .

Data Tables Reports

Data Set Name Report .
Coupling Facility Data Table Pools Report
DB2 Connection Report . Co
DB2 Entries Report. .

User Exit Programs Report .

Global User Exits Report.

Trace Settings Report .

Enqueue Manager Report

Enqueue Models Report .

Recovery Manager Report .

Page Index Report .

Appendix F. MVS and CICS virtual storage .
MVS storage . G e e

The MVS common area .

Private area and extended prlvate area
The CICS private area

High private area
MVS storage above region .
The CICS region.

CICS virtual storage
The dynamic storage areas .

CICS subpools .
Short-on-storage conditions caused by subpool storage fragmentatlon .
CICS kernel storage

Appendix G. Sample performance data
Variable costs .
Logging .
Syncpointing .
Additional costs . .
Transaction initialization and termrnatron .
Receive . .
Attach/terminate .
Send .
File control .
READ.

Contents

. 761
. 762
. 762
. 764
. 765
. 768
. 770
. 772
. 773
. 775
. 777
. 779
. 779
. 781
. 782
. 784
. 789
. 791
. 792
. 795
. 796
. 797
. 802
. 805
. 807
. 809
. 812
. 814
. 815
. 818

. 821
. 821
. 823
. 825
. 826
. 827
. 829
. 829
. 830
. 830
. 831
. 844
. 847

. 849
. 849
. 850
. 851
. 852
. 852
. 852
. 852
. 853
. 853
. 853

XXi

READ UPDATE .853

Non-recoverable files .853
Recoverable files .853
REWRITE .85
Non-recoverable files .84
Recoverable files .84
WRITE e . 1o
Non-Recoverable frles. e e e e8b4
Recoverable files .854
DELETE. . . . e < 17
Non-Recoverable frles. e e e85
Recoverable files .855
Browsing85
UNLOCK e e e e85
Coupling facility data tables T < 1514
Record Level Sharing(RLS)856
Temporary Storage .856
Main Storage .856
Auxiliary Storage. . . Y < 1516
Non-Recoverable TS Queue Y = 1515)
Recoverable TSQueue .856
Shared Temporary Storage e < 1574
Transient Data - Y4
Intrapartition Queves .85%7
Non-Recoverable TD Queve85
Logically Recoverable TD Queve.857
Physically Recoverable TD Queue85
Extrapartition queves .858
Program Control .858
Storage control . . . e e eB8b8
Interregion Communrcatron O < fote |
Transaction routing . . . < 1)
Function shipping (MROLRM YES) T < 151¢)
Function shipping (MROLRM=NO) 859
Bibliography . . . I < (52
The CICS Transaction Server for z/OS I|brary e e861
The entittementset. T < 2
PDF-only books .86
Other CICS books .863
Books from related libraries.863
z/OS Communication Server863
CICS Performance Analyzer863
DB2 863
DB2 Performance Expen for z/OS and DBZ Performance Monltor for z/OS 863
DFSMS0864
MS0864
MVvS«864
z/OS Resource Measurement Facrlrty (RMF) . e864
Language Environmento . e864
Tivoli Decision Supportforz/OS864
NetView Performance Monitor (NPM) 864
Tuningtools864
Others . . . e0864
Determining if a publ|cat|on is current e e e e865

XXil CICS TS for z/0S: CICS Performance Guide

Accessibility867
Index.869
Notices .88
Programming Interface Informaton 884

Trademarks. .88

Sending your commentstolBM®887

Contents XXiil

XXiV CICS TS for z/OS: CICS Performance Guide

Preface

What this book is about

This book is intended to help you to:
» Establish performance objectives and monitor them

+ ldentify performance constraints, and make adjustments to the operational CICS®
system and its application programs.

This book does not discuss the performance aspects of the CICS Transaction
Server for z/0S®, Version 3 Release 1 Front End Programming Interface, although
it does document the Front End Programming Interface statistics. For more
information about the Front End Programming Interface, see fthe CICS Front End|
|Programming Interface User's Guidel

Who this book is for

This book is for a person who is involved in:
» System design
» Monitoring and tuning CICS performance.

What you need to know to understand this book

You need to have a good understanding of how CICS works. This assumes
familiarity with many of the books in the CICS Transaction Server for z/OS, Version
3 Release 1 library, together with adequate practical experience of installing and
maintaining a CICS system.

How to use this book

If you want to establish performance objectives, monitor the performance of a CICS
system, and occasionally make adjustments to the system to keep it within
objectives, you should read through this book in its entirety.

If you have a performance problem and want to correct it, read Parts 3 and 4. You
may need to refer to various sections in Part 2.

Notes on terminology
The following abbreviations are used throughout this book:
* “CICS” refers to the CICS element in CICS Transaction Server for z/OS.

+ “MVS™ refers to the operating system, which can be either an element of z/OS
or 0S/390°.

+ “VTAM® refers to ACF/VTAM.
+ “DL/I" refers to the database component of IMS/ESA®.

© Copyright IBM Corp. 1983, 2011 XXV

XXVi CICS TS for z/OS: CICS Performance Guide

Summary of changes

This edition is based on the CICS Performance Guide for CICS Transaction Server
for z/OS, Version 2 Release 3. Changes from that edition are marked by vertical
bars in the left margin.

This part lists briefly the changes that have been made for recent releases.

Changes for CICS Transaction Server for z/OS, Version 3 Release 1

The more significant changes for this edition are:

» Because of the removal of run-time support for hpj-compiled Java program
objects and hot-pooling, the information about hot-pooling and hot-pooling
storage usage was removed.

. |Chapter 18, “CICS Web support: performance and tuning,” on page 265| has
been revised for changes to CICS Web support.

* New TCB modes SP, L9, X8 and X9 are added, and monitoring and statistics
information is provided about these.

* In |“Performance class data” on page 83,| there are new or changed performance
class data fields in the following sections:
— DFHCHNL
— DFHPROG
— DFHTASK
- DFHWEBB

» Changes are made to the following CICS statistics:

— [ISC/IRC attach time entry statistics” on page 500]
[TCP/IP global and TCP/IP Service statistics” on page 579
— [‘Terminal control statistics” on page 595|
— [F'URIMAP definition statistics” on page 628 (new)

— [‘Web service statistics” on page 640 (new)
[‘PIPELINE definition statistics” on page 546 (new)
* Changes are made to the following DFHOSTAT reports:

— [‘System Status Report” on page 664|

— [‘Programs by DSA and LPA Report” on page 718
[‘Connections and Modenames Report” on page 747
— [TCP/IP Report” on page 751|and ['TCP/IP Services Report’ on page 754

— ['URIMAPs Global Report” on page 757|and ['{URIMAPs Report” on page 759
(new)

— [Virtual Hosts Report” on page 761 (new)

[‘Web Services Report” on page 762 (new)
[‘PIPELINEs Report” on page 762| (new)
[‘Document Templates Report” on page 764 (new)
— [Trace Settings Report” on page 809 (new)

Changes for CICS Transaction Server for z/OS, Version 2 Release 3

The more significant changes for this edition are:
Technical changes

© Copyright IBM Corp. 1983, 2011 XXVii

« [Chapter 20, “Java applications using a Java virtual machine (JVM): improving|
performance,” on page 301| has been revised for the enhancements to CICS
support for the Java Virtual Machine (JVM).

« [‘Processing CICS statistics” on page 39 has information about the DFHSTUP
extract statistics reporting facility to send CICS statistics data to a user program.

+ [Chapter 7, “CICS Performance Analyzer for zZOS (CICS PA),” on page 135 is
updated to reflect changes to the CICS Performance Analyzer program product.

* The default value for EDSALIM is now 30MB (seq‘Adjusting the limits for]
[dynamic storage areas” on page 363).

* In |“Performance class data” on page 83,|there are new or changed performance
class data fields in the following sections: ['Performance data in group DFHRM!']
on page 95J]“Performance data in group DFHTASK” on page 101 ,[[‘Performance]
data in group DFHEJBS” on page 89.|

* In[Appendix A, “CICS statistics tables,” on page 413,|changes are made to the
following statistics:

— [‘Enterprise bean statistics” on page 464| (new section)
— [{JVM Pool statistics” on page 504
— [*JVM profile statistics” on page 506/ (new section)
— [{JVM program statistics” on page 510| (new section)
— [‘Dispatcher domain: TCB Mode statistics” on page 445|
[‘Storage manager statistics” on page 563]
« Changes are made to the following DFHOSTAT reports:
— [‘Dispatcher TCB Modes Report” on page 674
— [‘Dispatcher TCB Pools Report” on page 680|
— [‘Dispatcher MVS TCBs Report” on page 684
— [Temporary Storage Report” on page 719
— [Temporary Storage Main — Storage Subpools Report” on page 724
— [‘User Exit Programs Report” on page 805
— [‘System Status Report” on page 664
[‘Storage - Domain Subpools” on page 696
- [{JVM Pool and Class Cache Report” on page 765
- [{JVMs Report’ on page 768 (new report)
- ['{JVM Profiles Report” on page 770 (new report)
[‘JVM Programs Report” on page 772 (new report)
[‘CorbaServers Report” on page 775
— [‘DJARs and Enterprise Beans Report” on page 779

Structural changes
* There are no significant structural changes for this edition.

Changes for CICS Transaction Server for z/OS, Version 2 Release 2

XXViii

The more significant changes for this edition are:

Technical changes

Chapter 7, “CICS Performance Analyzer for z/OS (CICS PA),” on page 135| is
added, giving information about the CICS Performance Analyzer program
product, a new reporting tool that provides information on the performance of
CICS systems and applications.

CICS TS for z/0OS: CICS Performance Guide

[Chapter 5, “Using CICS statistics,” on page 33| includes new information in the
following sections: [“Interpreting dispatcher statistics” on page 41| and [‘Interpreting
[JVM statistics” on page 50

“Transaction resource class data” on page 65|and [“Transaction resource class|
data” on page 126| have information about transaction resource class data, which
can now be collected.

In |“Performance class data” on page 83,| there are new or changed performance
class data fields in the following sections: [‘Performance data in group DFHCICS”|

on page 85J]“Performance data in group DFHDATA” on page 87,||“Performanc§

data in group DFHPROG” on page 93J]“Performance data in group DFHSOCK”
on page 96, and[‘Performance data in group DFHTASK” on page 101

Chapter 20, “Java applications using a Java virtual machine (JVM): improving|
performance,” on page 301|has further revisions and new information.

“Managing the performance of Secure Sockets Layer support” on page 268| has
new information on SSL storage use.

[Chapter 21, “Database management for performance,” on page 329 includes new
information on CICS DB2® performance tuning, and explains the implications for
the MAXOPENTCBS system initialization parameter when CICS is connected to
DB2 Version 6 or later and is exploiting the open transaction environment.

“Specifying the log defer interval (LGDFINT)” on page 349|is added to
Chapter 22, “Logging and journaling: performance considerations,” on page 339

In[Appendix A, “CICS statistics tables,” on page 413,/ changes are made to the
following statistics:

— [‘CICS DB2 statistics” on page 420|

— [‘CorbaServer statistics” on page 436|

[‘DBCTL session termination statistics” on page 439
[‘Dispatcher domain statistics” on page 442

— [‘File control statistics” on page 470|

— [‘Logstream statistics” on page 511|

— [‘Statistics domain statistics” on page 560|

[TCP/IP global and TCP/IP Service statistics” on page 579|

The sample statistics program DFHOSTAT has been restructured — see
[‘Information on DFHOSTAT” on page 657] for information. Changes are made to
the following DFHOSTAT reports:

— [‘System Status Report” on page 664|

[‘Dispatcher Report” on page 672

[‘Dispatcher TCB Modes Report” on page 674

— [‘Dispatcher TCB Pools Report” on page 680| (new report)

— [‘Temporary Storage Models Report” on page 729| (new report)

— |‘Logstreams Report” on page 735| (new report “Logstream Global Report”)
— |'TCP/IP Services Report” on page7_54|

— [‘CorbaServers Report” on page 775
— |‘CorbaServers and DJARs Report” on page 777|
— [‘Files Report” on page 789
— ['DB2 Connection Report” on page 797
— [‘DB2 Entries Report” on page 802
— [‘User Exit Programs Report” on page 805
— [‘Global User Exits Report” on page 807

Summary of changes XXiX

— [‘Enqueue Models Report” on page 814| (new report)

+ The use of Language Environment® is assumed for CICS based utilities, and is
implied in all programming guidance information. Support for non-Language
Environment conforming compilers is withdrawn. Runtime support is maintained
for non-Language Environment conforming compilers and runtime libraries, but
no guidance is given.

Structural changes

. In|Appendix A, “CICS statistics tables,” on page 413,| the statistics reports have
been reorganized so that for each statistics type, all the full reports appear
together, followed by all the summary reports.

Changes for CICS Transaction Server for z/OS, Version 2 Release 1

Tivoli® Performance Reporter for OS/390 is now known as Tivoli Decision Support
for 0S/390.

IMS/ESA Performance Analyzer (IMS™ PA) replaces IMSASAP and IMSPARS.
Information was included on hot-pooling and hot-pooling storage usage for Java

program objects. Support for this feature was removed in CICS Transaction Server
for zZ/OS Version 3 Release 1.

Chapter 20, “Java applications using a Java virtual machine (JVM): improving|
erformance,” on page 301|has been substantially updated.

IAppendix A, “CICS statistics tables,” on page 413 includes the following new
sections:

+ [*JVM Pool statistics” on page 504

+ [‘CorbaServer statistics” on page 436

+ [‘Requestmodel statistics” on page 557|

« [TCP/IP global and TCP/IP Service statistics” on page 579

Changes have also been made to the sample statistics program, DFHOSTAT,
described in|Appendix E, “The sample statistics program, DFHOSTAT,” on page 657}

» The program has been restructured.
» The following reports have been added:

TCP/IP

JVMpool

EJB system data sets
CorbaServers and DJARs
DJARs and Enterprise beans
Requestmodels

Data set names

« Changes have been made to the following reports:

System Status
Dispatcher

TCP/IP Services
Connections
Loader

Terminal Autoinstall

XXX CICS TS for z/OS: CICS Performance Guide

Files
LSR Pools
Terminal Autoinstall

Earlier releases

Changes for CICS Transaction Server for 0S/390, Version 1 Release 3

The chapter on Service Level Reporter (SLR) has been removed.

|Chapter 8, “Tivoli Decision Support for z/OS,” on page 157| replaces the chapter on
Performance Reporter for MVS.

Performance considerations resulting from enhancements to CICS Web support and
the introduction of Secure Sockets Layer for Web security, are discussed in
[Chapter 18, “CICS Web support: performance and tuning,” on page 265.|

The performance implications of using Coupling Facilities Data Tables, including
information about contention model and locking model, are discussed in|{Chapter 19,

'VSAM and file control: improving performance,” on page 271 |

Chapter 20, “Java applications using a Java virtual machine (JVM): improving|
erformance,” on page 301|describes performance implications for programs run
using the MVS Java Virtual Machine (JVM).

[Chapter 9, “Managing Workloads,” on page 167/ has been revised to discuss more
fully the implications and benefits of using the MVS workload manager, and to
introduce the CICSPlex® SM dynamic routing program used by the WLM.

Additional or changed statistics for the following have been documented:

» Dispatcher domain

* Enqueue domain

* Files

+ ISC/IRC

» TCP/IP Services

Separate appendixes have been created to show the statistics obtained for the
following:

» Coupling facility data tables server

* Named counter sequence number server

Changes have also been made to several reports in the sample statistics program,
DFHOSTAT.

Summary of changes ~ XXXi

XXXii CICS TS for z/OS: CICS Performance Guide

Part 1. Setting performance objectives

This book describes how CICS performance might be improved. It also provides
reference information to help you achieve such improvement.

Good performance is the achievement of agreed service levels. This means that
system availability and response times meet user’s expectations using resources
available within the budget.

The performance of a CICS system should be considered:
* When you plan to install a new system

* When you want to review an existing system

* When you contemplate major changes to a system.

There are several basic steps in tuning a system, some of which may be just
iterative until performance is acceptable. These are:

1. Agree what good performance is.

2. Set up performance objectives (described in |Chapter 1, “Establishingl
[performance objectives’).

3. Decide on measurement criteria (described in [Chapter 3, “Performance]
[monitoring and review’).

4. Measure the performance of the production system.
5. Adjust the system as necessary.

6. Continue to monitor the performance of the system and anticipate future
constraints (see [Monitoring for the future” on page 13).

Parts 1 and 2 of this book describe how to monitor and assess performance.
Parts 3 and 4 suggest ways to improve performance.

This part contains the following chapters:

+ [Chapter 1, “Establishing performance objectives,” on page 3

+ [Chapter 2, “Gathering data for performance objectives,” on page 7|
+ [Chapter 3, “Performance monitoring and review,” on page 9/

Recommendations given in this book, based on current knowledge of CICS, are
general in nature, and cannot be guaranteed to improve the performance of any
particular system.

© Copyright IBM Corp. 1983, 2011

2 CICS TS for z/0S: CICS Performance Guide

Chapter 1. Establishing performance objectives

The process of establishing performance objectives is described in this chapter in
the following sections:

+ [Terms used in performance measurement’|

« [“Defining performance objectives and priorities” on page 4|

« [‘Analyzing the current workload” on page 5|

- [‘Translating resource requirements into system objectives” on page 6|

Performance objectives often consist of a list of transactions and expected timings
for each. Ideally, through them, good performance can be easily recognized and
you know when to stop further tuning. They must, therefore, be:

* Practically measurable
* Based on a realistic workload
» Within the budget.

Such objectives may be defined in terms such as:

» Desired or acceptable response times, for example, within which 90% of all
responses occur

» Average or peak number of transactions through the system
» System availability, including mean time to failure, and downtime after a failure.

After you have defined the workload and estimated the resources required, you
must reconcile the desired response with what you consider attainable. These
objectives must then be agreed and regularly reviewed with users.

Establishing performance objectives is an iterative process involving the activities
described in the rest of this chapter.

Terms used in performance measurement

For performance measurements we need to be very specific about what we are
measuring. Therefore, it is necessary to define a few terms.

The word user here means the terminal operator. A user, so defined, sees CICS
performance as the response time, that is, the time between the last input action
(for example, a keystroke) and the expected response (for example, a message on
the screen). Several such responses might be required to complete a user function,
and the amount of work that a user perceives as a function can vary enormously.
So, the number of functions per period of time is not a good measure of
performance, unless, of course, there exists an agreed set of benchmark functions.

A more specific unit of measure is therefore needed. The words transaction and
task are used to describe units of work within CICS. Even these can lead to
ambiguities, because it would be possible to define transactions and tasks of
varying size. However, within a particular system, a series of transactions can be
well defined and understood so that it becomes possible to talk about relative
performance in terms of transactions per second (or minute, or hour).

In this context there are three modes of CICS operation.

© Copyright IBM Corp. 1983, 2011 3

Nonconversational

Transaction

Task

Input Work Output

Nonconversational mode is of the nature of one question, one answer; resources
are allocated, used, and released immediately on completion of the task. In this
mode the words transaction and task are more or less synonymous.

Conversational

Transaction

Work [—— Output

Input Work Output + Input

Conversational mode is potentially wasteful in a system that does not have
abundant resources. There are further questions and answers during which
resources are not released. Resources are, therefore, tied up unnecessarily waiting
for users to respond, and performance may suffer accordingly. Transaction and task
are, once again, more or less synonymous.

Pseudoconversational

Transaction

Task Task

Input Work Output Input Work [—— Output

Pseudoconversational mode allows for slow response from the user. Transactions
are broken up into more than one task, yet the user need not know this. The
resources in demand are released at the end of each task, giving a potential for
improved performance.

The input/output surrounding a task may be known as the dialog.

Defining performance objectives and priorities

Performance objectives and priorities depend on user’s expectations. From the
point of view of CICS, these objectives state response times to be seen by the
terminal user, and the total throughput per day, hour, or minute.

The first step in defining performance objectives is to specify what is required of the
system. In doing this, you must consider the available hardware and software
resources so that reasonable performance objectives can be agreed. Alternatively
you should ascertain what additional resource is necessary to attain users’

4 CICS TS for z/0S: CICS Performance Guide

expectations, and what that resource would cost. This cost might be important in
negotiations with users to reach an acceptable compromise between response time
and required resource.

An agreement on acceptable performance criteria between the data processing and
user groups in an organization is often formalized and called a service level
agreement.

Common examples in these agreements are, on a network with remote terminals,
that 90% of all response times sampled are under six seconds in the prime shift, or
that the average response time does not exceed 12 seconds even during peak
periods. (These response times could be substantially lower in a network consisting
only of local terminals.)

You should consider whether to define your criteria in terms of the average, the
90th percentile, or even the worst-case response time. Your choice may depend on
the audit controls of your installation and the nature of the transactions in question.

Analyzing the current workload

Break down the work to be done into transactions. Develop a profile for each
transaction that includes:

* The workload, that is, the amount of work done by CICS to complete this
transaction. In an ideal CICS system (with optimum resources), most transactions
perform a single function with an identifiable workload.

* The volume, that is, the number of times this transaction is expected to be
executed during a given period. For an active system, you can get this from the
CICS statistics.

Later, transactions with common profiles can be merged, for convenience into
transaction categories.

Establish the priority of each transaction category, and note the periods during
which the priorities change.

Determine the resources required to do the work, that is:

» Physical resources managed by the operating system (real storage, DASD I/O,
terminal 1/0)

» Logical resources managed by the subsystem, such as control blocks and
buffers.

To determine transaction resource demands, you can make sample measurements
on a dedicated machine using the CICS monitoring facility. Use these results to
suggest possible changes that could have the greatest effect if applied before
system-wide contention arises. You can also compare your test results with those in
the production environment.

See |Chapter 2, “Gathering data for performance objectives,” on page 7| for more
detailed recommendations on this step.

Chapter 1. Establishing performance objectives 5

Translating resource requirements into system objectives

You have to translate the information you have gathered into system-oriented
objectives for each transaction category. Such objectives include statements about
the transaction volumes to be supported (including any peak periods) and the
response times to be achieved.

Any assumptions that you make about your installation must be used consistently in
future monitoring. These assumptions include computing-system factors and
business factors.

Computing-system factors include the following:

» System response time: this depends on the design and implementation of the
code, and the power of the processor.

» Network response time: this can amount to seconds, while responses in the
processor are likely to be in fractions of seconds. This means that a system can
never deliver good responses through an overloaded network, however good the
processor.

* DASD response time: this is generally responsible for most of the internal
processing time required for a transaction. You must consider all 1/O operations
that affect a transaction.

» Existing workload: this may affect the performance of new transactions, and vice
versa. In planning the capacity of the system, consider the total load on each
major resource, not just the load for the new application.

Response times can vary for a number of reasons, and the targets should,
therefore, specify an acceptable degree of tolerance. Allow for transactions that
are known to make heavy demands on the processor and database 1/0O.

To reconcile expectations with performance, it may be necessary to change the
expectations or to vary the mix or volume of transactions.

Business factors are concerned with work fluctuations. Allow for daily peaks (for
example, after receipt of mail), weekly peaks (for example, Monday peak after
weekend mail), and seasonal peaks as appropriate to the business. Also allow for
the peaks of work after planned interruptions, such as preventive maintenance and
public holidays.

6 CICS TS for z/OS: CICS Performance Guide

Chapter 2. Gathering data for performance objectives

During the design, development, and test of a total system, information is gathered
about the complexity of processing with particular emphasis on 1/0 activity. This
information is used for establishing performance objectives.

The following phases of installation planning are discussed in this chapter:

[‘Gathering performance information: Requirements definition phase”|

[‘Gathering performance information: External design phase’|

[‘Gathering performance information: Internal design phase’]

[‘Gathering performance information: Coding and testing phase” on page §
[‘Gathering performance information: Post-development review” on pagﬂl
“Gathering performance information: Information supplied by end users” on page|

El

Gathering performance information: Requirements definition phase

In this phase, careful estimates are your only input, as follows:

Number of transactions for each user function

Number of I/O operations per user function (DASD and terminals)

Time required to key in user data (including user “thinking time”)

Line speeds (number of characters per second) for remote terminals

Number of terminals and operators required to achieve the required rate of input
Maximum rate of transactions per minute/hour/day/week

Average and maximum workloads (that is, processing per transaction)

Average and maximum volumes (that is, total number of transactions)

Likely effects of performance objectives on operations and system programming.

Gathering performance information: External design phase

During the external design phase, you should:

1.

Estimate the network, processor, and DASD loading based on the dialog
between users and tasks (that is, the input to each transaction, and consequent
output).

Revise your disk access estimates. After external design, only the logical data
accesses are defined (for example, EXEC CICS READ).

Estimate coupling facility resources usage for the MVS system logger and
resource files, or any cross-system coupling facility (XCF) activity.

Remember that, after the system has been brought into service, no amount of
tuning can compensate for poor initial design.

Gathering performance information: Internal design phase

More detailed information is available to help:

© Copyright IBM Corp. 1983, 2011

Refine your estimate of loading against the work required for each transaction
dialog. Include screen control characters for field formatting.

» Refine disk access estimates against database design. After internal design, the
physical data accesses can be defined at least for the application-oriented
accesses.

» Add the accesses for CICS temporary storage (scratchpad) data, program library,
and CICS transient data to the database disk accesses.

« Consider if additional loads could cause a significant constraint.
* Refine estimates on processor use.

Gathering performance information: Coding and testing phase

During the coding and testing phase, you should:
1. Refine the internal design estimates of disk and processing resources.
2. Refine the network loading estimates.

3. Run the monitoring tools and compare results with estimates. See |Chapter 4,
[‘Performance measurement tools: Overview,” on page 21| for information on the
CICS monitoring tools.

Gathering performance information: Post-development review
Review the performance of the complete system in detail. The main purposes are
to:
» Validate performance against objectives
* |dentify resources whose use requires regular monitoring
* Feed the observed figures back into future estimates.

To achieve this, you should:

Identify discrepancies from the estimated resource use

Identify the categories of transactions that have caused these discrepancies
Assign priorities to remedial actions

Identify resources that are consistently heavily used

Provide utilities for graphic representation of these resources

Project the loadings against the planned future system growth to ensure that
adequate capacity is available

Update the design document with the observed performance figures
Modify the estimating procedures for future systems.

ook wn =

© N

Gathering performance information: Information supplied by end users

Comments from users are a necessary part of the data for performance analysis
and improvement. Reporting procedures must be established, and their use
encouraged.

Log exceptional incidents. These incidents should include system, line, or
transaction failure, and response times that are outside specified limits. In addition,
you should log incidents that threaten performance (such as deadlocks, deadlock
abends, stalls, indications of going short-on-storage (SOS) and maximum number of
multiregion operation (MRO) sessions used) as well as situations such as
recoveries, including recovery from DL/l deadlock abend and restart, which mean
that additional system resources are being used.

The data logged should include the date and time, location, duration, cause (if
known), and the action taken to resolve the problem.

8 CICS TS for z/0S: CICS Performance Guide

Chapter 3. Performance monitoring and review

This chapter describes in the following sections some monitoring techniques; and
how to use them.

[‘Deciding on monitoring activities and techniques’|

[‘Developing monitoring activities and techniques” on page 10|

+ [‘Planning the performance review process” on page 11|

« [‘Planning your monitoring schedule” on page 11|

[‘Reviewing performance data” on page 13

[‘Typical performance review questions” on page 14

* |“Confirming that the system-oriented objectives are reasonable” on page 17
. “‘Anticipating and monitoring system changes and growth” on page 17|

Once set, as described in [Chapter 1, “Establishing performance objectives,” on|
performance objectives should be monitored using appropriate methods.

Deciding on monitoring activities and techniques

In this book, monitoring is specifically used to describe regular checking of the
performance of a CICS production system, against objectives, by the collection and
interpretation of data. Subsequently, analysis describes the techniques used to
investigate the reasons for performance deterioration. Tuning may be used for any
actions that result from this analysis.

Monitoring should be ongoing because it:

» Establishes transaction profiles (that is, workload and volumes) and statistical
data for predicting system capacities

» Gives early warning through comparative data to avoid performance problems

* Measures and validates any tuning you may have done in response to an earlier
performance problem.

A performance history database (see [‘Tivoli Decision Support for z/0S” on page 28|
for an example) is a valuable source from which to answer questions on system
performance, and to plan further tuning.

Monitoring may be described in terms of strategies, procedures, and tasks.

Strategies may include:

» Continuous or periodic summaries of the workload. You can track all transactions
or selected representatives.

* Snapshots at normal or peak loads. Peak loads should be monitored for two
reasons:

1. Constraints and slow responses are more pronounced at peak volumes.
2. The current peak load is a good indicator of the future average load.

Procedures, such as good documentation practices, should provide a management
link between monitoring strategies and tasks. The following should be noted:

* The growth of transaction rates and changes in the use of applications
» Consequent extrapolation to show possible future trends

© Copyright IBM Corp. 1983, 2011 9

* The effects of nonperformance system problems such as application abends,
frequent signon problems, and excessive retries.

Tasks (not to be confused with the task component of a CICS transaction) include:

+ Running one or more of the tools described in [Chapter 4, “Performance]
[measurement tools: Overview,” on page 21|

* Collating the output
» Examining it for trends.

You should allocate responsibility for these tasks between operations personnel,
programming personnel, and analysts. You must identify the resources that are to
be regarded as critical, and set up a procedure to highlight any trends in the use of
these resources.

Because the tools require resources, they may disturb the performance of a
production system.

Give emphasis to peak periods of activity, for both the new application and the
system as a whole. It may be necessary to run the tools more frequently at first to
confirm that the expected peaks correspond with the actual ones.

It is not normally practical to keep all the detailed output. Arrange for summarized
reports to be filed with the corresponding CICS statistics, and for the output from
the tools to be held for an agreed period, with customary safeguards for its
protection.

Conclusions on performance should not be based on one or two snapshots of
system performance, but rather on data collected at different times over a
prolonged period. Emphasis should be placed on peak loading. Because different
tools use different measurement criteria, early measurements may give apparently
discrepant results.

Your monitoring procedures should be planned ahead of time. These procedures
should explain the tools to be used, the analysis techniques to be used, the
operational extent of those activities, and how often they are to be performed.

Developing monitoring activities and techniques

When you are developing a master plan for monitoring and performance analysis,
you should establish:

* A master schedule of monitoring activity. You should coordinate monitoring with
operations procedures to allow for feedback of online events as well as
instructions for daily or periodic data gathering.

* The tools to be used for monitoring. The tools used for data gathering should
provide for dynamic monitoring, daily collection of statistics, and more detailed
monitoring. (See|“PIanning your monitoring schedule” on page 11.b

* The kinds of analysis to be performed. This must take into account any controls
you have already established for managing the installation. You should document
what data is to be extracted from the monitoring output, identifying the source
and usage of the data. Although the formatted reports provided by the monitoring
tools help to organize the volume of data, you may need to design worksheets to
assist in data extraction and reduction.

10 CICS TS for z/0S: CICS Performance Guide

A list of the personnel who are to be included in any review of the findings. The
results and conclusions from analyzing monitor data should be made known to
the user liaison group and to system performance specialists.

A strategy for implementing changes to the CICS system design resulting from
tuning recommendations. This has to be incorporated into installation
management procedures, and would include items such as standards for testing
and the permitted frequency of changes to the production environment.

Planning the performance review process

Establish a schedule for monitoring procedures. This schedule should be as simple
as possible. The activities done as part of the planning should include the following:

Listing the CICS requests made by each type of task. This helps you decide
which requests or which resources (the high-frequency or high-cost ones) need
to be looked at in statistics and CICS monitoring facility reports.

Drawing up checklists of review questions.

Estimating resource usage and system loading for new applications. This is to
enable you to set an initial basis from which to start comparisons.

Planning your monitoring schedule

You should plan for the following broad levels of monitoring activity:

Dynamic (online) monitoring.
Daily monitoring.
Periodic (weekly and monthly) monitoring.

Keeping sample reports as historical data. You can also keep historical data in a
database such as the Tivoli Decision Support database.

Dynamic monitoring

Dynamic monitoring, is “on-the-spot” monitoring that you can, and should, carry out
at all times. This type of monitoring generally includes the following:

Observing the system’s operation continuously to discover any serious short-term
deviation from performance objectives.

Use the CEMT transaction (CEMT INQISET MONITOR), together with end-user
feedback. You can also use the Resource Measurement Facility (RMF™) to
collect information about processor, channel, coupling facility, and 1/0O device
usage.

Obtaining status information. Together with status information obtained by using
the CEMT transaction, you can get status information on system processing
during online execution. This information could include the queue levels, active
regions, active terminals, and the number and type of conversational
transactions. You could get this information with the aid of an automated program
invoked by the master terminal operator. At prearranged times in the production
cycle (such as before scheduling a message, at shutdown of part of the network,
or at peak loading), the program could capture the transaction processing status
and measurements of system resource levels.

The System Management product, CICSPlex SM, can accumulate information
produced by the CICS monitoring facility to assist in dynamic monitoring
activities. The data can then be immediately viewed online, giving instant
feedback on the performance of the transactions. To allow CICSPlex SM to
collect CICS monitoring information, CICS monitoring must be active using CEMT
SET MONITOR ON.

Chapter 3. Performance monitoring and review 11

Daily monitoring
The overall objective here is to measure and record key system parameters daily.

The daily monitoring data usually consists of counts of events and gross level
timings. In some cases, the timings are averaged for the entire CICS system.

* Record both the daily average and the peak period (usually one hour) average
of, for example, messages, tasks, processor usage, I/O events, and storage
used. Compare these against your major performance objectives and look for
adverse trends.

» List the CICS-provided statistics at the end of every CICS run. You should date
and time-stamp the data that is provided, and file it for later review. For example,
in an installation that has settled down, you might review daily data at the end of
the week; generally, you can carry out reviews less frequently than collection, for
any one type of monitoring data. If you know there is a problem, you might
increase the frequency; for example, reviewing daily data immediately it becomes
available.

You should be familiar with all the facilities in CICS for providing statistics at
times other than at shutdown. The main facilities, using the CEMT transaction,
are invocation from a terminal (with or without reset of the counters) and
automatic time-initiated requests.

* File an informal note of any incidents reported during the run. These may include
a shutdown of CICS that causes a gap in the statistics, a complaint from your
end users of poor response times, a terminal going out of service, or any other
item of significance. This makes it useful when reconciling disparities in detailed
performance figures that may be discovered later.

* Print the system console log for the period when CICS was active, and file a
copy of the console log in case it becomes necessary to review the CICS system
performance in the light of the concurrent batch activity.

+ Run one of the performance analysis tools described in|Chapter 4, “Performance]
[measurement tools: Overview,” on page 21|for at least part of the day if there is
any variation in load from day to day. File the summaries of the reports produced
by the tools you use.

« Transcribe onto a graph any items identified as being consistently heavily used in
the post-development review phase (described in [Chapter 2, “Gathering data for
[performance objectives,” on page 7).

» Collect CICS statistics, monitoring data, and RMF data into the Tivoli Decision
Support database.

Weekly monitoring

Here, the objective is to periodically collect detailed statistics on the operation of
your system for comparison with your system-oriented objectives and workload
profiles.

* Run the CICS monitoring facility with performance class active, and process it. It
may not be necessary to do this every day, but it is important to do it regularly
and to keep the sorted summary output as well as the detailed reports.

Whether you do this on the same day of the week depends on the nature of the
system load. If there is an identifiable heavy day of the week, this is the one that
you should monitor. (Bear in mind, however, that the use of the monitoring facility
causes additional load, particularly with performance class active.)

If the load is apparently the same each day, run the CICS monitoring facility daily
for a period sufficient to confirm this. If there really is little difference from day to
day in the CICS load, check the concurrent batch loads in the same way from
the logs. This helps you identify any obscure problems because of peak volumes

12 CICS TS for z/0S: CICS Performance Guide

or unusual transaction mixes on specific days of the week. The first few weeks’
output from the CICS statistics also give guidance for this.

It may not be necessary to review the detailed monitor report output every time,
but you should always keep this output in case the summary data is insufficient
to answer questions raised by the statistics or by user comments. Label the
CICS monitoring facility output tape (or a dump of the DASD data set) and keep
it for an agreed period in case further investigations are required.

* Run RMF, because this shows 1/O usage, channel usage, and so on. File the
summary reports and archive the output tapes for some agreed period.

* Review the CICS statistics, and any incident reports.

* Review the graph of critical parameters. If any of the items is approaching a
critical level, check the performance analysis and RMF outputs for more detail
and follow any previously agreed procedures (for example, notify your
management).

» Tabulate or produce a graph of values as a summary for future reference.
* Produce weekly Tivoli Decision Support or CICS Performance Analyzer reports.

Monthly monitoring
+ Run RMF.

* Review the RMF and performance analysis listings. If there is any indication of
excessive resource usage, follow any previously agreed procedures (for example,
notify your management), and do further monitoring.

» Date- and time-stamp the RMF output and keep it for use in case performance
problems start to arise. You can also use the output in making estimates, when
detailed knowledge of component usage may be important. These aids provide
detailed data on the usage of resources within the system, including processor
usage, use of DASD, and paging rates.

* Produce monthly Tivoli Decision Support reports showing long-term trends.

Monitoring for the future

When performance is acceptable, you should establish procedures to monitor
system performance measurements and anticipate performance constraints before
they become response-time problems. Exception-reporting procedures are a key to
an effective monitoring approach.

In a complex production system there is usually too much performance data for it to
be comprehensively reviewed every day. Key components of performance
degradation can be identified with experience, and those components are the ones
to monitor most closely. You should identify trends of usage and other factors (such
as batch schedules) to aid in this process.

Consistency of monitoring is also important. Just because performance is good for
six months after a system is tuned is no guarantee that it will be good in the
seventh month.

Reviewing performance data

The aims of the review procedure are to provide continuous monitoring, and to have
a good level of detailed data always available so that there is minimal delay in
problem analysis.

Generally, there should be a progressive review of data. You should review daily
data weekly, and weekly data monthly, unless any incident report or review raises

Chapter 3. Performance monitoring and review 13

questions that require an immediate check of the next level of detail. This should be
enough to detect out-of-line situations with a minimum of effort.

The review procedure also ensures that additional data is available for problem
determination, should it be needed. The weekly review should require approximately
one hour, particularly after experience has been gained in the process and after you
are able to highlight the items that require special consideration. The monthly
review will probably take half a day at first. After the procedure has been in force for
a period, it will probably be completed more quickly. However, when new
applications are installed or when the transaction volumes or numbers of terminals
are increased, the process is likely to take longer.

Review the data from the RMF listings only if there is evidence of a problem from
the gross-level data, or if there is an end-user problem that can’t be solved by the
review process. Thus, the only time that needs to be allocated regularly to the
detailed data is the time required to ensure that the measurements were correctly
made and reported.

When reviewing performance data, try to:
» Establish the basic pattern in the workload of the installation
 |dentify variations from the pattern.

Do not discard all the data you collect, after a certain period. Discard most, but
leave a representative sample. For example, do not throw away all weekly reports
after three months; it is better to save those dealing with the last week of each
month. At the end of the year, you can discard all except the last week of each
quarter. At the end of the following year, you can discard all the previous year’s
data except for the midsummer week. Similarly, you should keep a representative
selection of daily figures and monthly figures.

The intention is that you can compare any report for a current day, week, or month
with an equivalent sample, however far back you want to go. The samples become
more widely spaced but do not cease.

Typical performance review questions

Use the following questions as a basis for your own checklist when carrying out a
review of performance data. Many of these questions can be answered by
performance reporting packages such as CICS Performance Analyzer or Tivoli
Decision Support for z/OS.

Some of the questions are not strictly to do with performance. For instance, if the
transaction statistics show a high frequency of transaction abends with usage of the
abnormal condition program, this could perhaps indicate signon errors and,
therefore, a lack of terminal operator training. This, in itself, is not a performance
problem, but is an example of the additional information that can be provided by
monitoring.

1. What are the characteristics of your transaction workload?
a. Has the frequency of use of each transaction identifier altered?
b. Does the mix vary from one time of the day to another?
c. Should statistics be requested more frequently during the day to verify this?
A different approach must be taken:

14 CICS TS for z/0S: CICS Performance Guide

In systems where all messages are channeled through the same initial task
and program (for user security routines, initial editing or formatting, statistical
analysis, and so on)

For conversational transactions, where a long series of message pairs is
reflected by a single transaction

In transactions where the amount of work done relies heavily on the input
data.

In these cases, you have to identify the function by program or data set usage,
with appropriate reference to the CICS program statistics, file statistics, or other
statistics. In addition, you may be able to put user tags into the monitoring data
(for example, a user character field in the case of the CICS monitoring facility),
which can be used as a basis for analysis by products such as CICS
Performance Analyzer for z/OS, or Tivoli Decision Support for z/OS.

The questions asked above should be directed at the appropriate set of
statistics.

What is the usage of the telecommunication lines?

a.

Do the CICS terminal statistics indicate any increase in the number of
messages on the terminals on each of the lines?

Does the average message length on the CICS performance class monitor
reports vary for any transaction type? This can easily happen with an
application where the number of lines or fields output depends on the input
data.

Is the number of terminal errors acceptable? If you are using a terminal error

program or node error program, does this indicate any line problems? If not,
this may be a pointer to terminal operator difficulties in using the system.

What is the DASD usage?

a.

Is the number of requests to file control increasing? Remember that CICS
records the number of logical requests made. The number of physical I/Os
depends on the configuration of indexes, and on the data records per
control interval and the buffer allocations.

Is intrapartition transient data usage increasing? Transient data involves a
number of I/Os depending on the queue mix. You should at least review the
number of requests made to see how it compares with previous runs.

Is auxiliary temporary storage usage increasing? Temporary storage uses
control interval access, but writes the control interval out only at syncpoint or
when the buffer is full.

What is the virtual storage usage?

a.
b.

How large are the dynamic storage areas?

Is the number of GETMAIN requests consistent with the number and types
of tasks?

Is the short-on-storage (SOS) condition being reached often?

Have any incidents been reported of tasks being purged after deadlock
timeout interval (DTIMOUT) expiry?

How much program loading activity is there?

From the monitor report data, is the use of dynamic storage by task type as
expected?

Is storage usage similar at each execution of CICS?

Are there any incident reports showing that the first invocation of a function
takes a lot longer than subsequent ones? This may arise when programs
are loaded that then have to open data sets, particularly in IMS/ESA, for
example. Can this be reconciled with application design?

Chapter 3. Performance monitoring and review 15

What is the processor usage?

a. Is the processor usage as measured by the monitor report consistent with
previous observations?

Are batch jobs that are planned to run, able to run successfully?
Is there any increase in usage of functions running at a higher priority than

CICS? Include in this MVS readers and writers, MVS JES, and VTAM if
running above CICS, and overall I/O, because of the lower-priority regions.

What is the coupling facility usage?

a. What is the average storage usage?

b. What is the ISC link utilization?

Do any figures indicate design, coding, or operational errors?

a. Are any of the resources mentioned above heavily used? If so, was this
expected at design time? If not, can the heavy use be explained in terms of
heavier use of transactions?

b. Is the heavy usage associated with a particular application? If so, is there
evidence of planned growth or peak periods?

c. Are browse transactions issuing more than the expected number of
requests? In other words, is the count of browse requests issued by a
transaction greater than what you expected users to cause?

d. Is the CICS CSAC transaction (provided by the DFHACP abnormal condition
program) being used frequently? Is this because invalid transaction
identifiers are being entered? For example, errors are signaled if transaction
identifiers are entered in lowercase on IBM® 3270 terminals but automatic
translation of input to uppercase has not been specified.

A high use of the DFHACP program without a corresponding count of CSAC
may indicate that transactions are being entered without proper operator
signon. This may, in turn, indicate that some terminal operators need more
training in using the system.

In addition to the above, you should regularly review certain items in the CICS
statistics, such as:

Times the MAXTASK limit reached (transaction manager statistics)
Peak tasks (transaction class statistics)

Times cushion released (storage manager statistics)

Storage violations (storage manager statistics)

Maximum RPLs posted (VTAM statistics)

Short-on-storage count (storage manager statistics)

Wait on string total (file control statistics)

Use of DFHSHUNT log streams.

Times aux. storage exhausted (temporary storage statistics)
Buffer waits (temporary storage statistics)

Times string wait occurred (temporary storage statistics)

Times NOSPACE occurred (transient data global statistics)
Intrapartition buffer waits (transient data global statistics)
Intrapartition string waits (transient data global statistics)
Times the MAXOPENTCBS limit reached (dispatcher statistics)
Times the MAXSOCKETS limit reached (TCP/IP statistics)
Pool thread waits (DB2 connection statistics)

16 CICS TS for z/0S: CICS Performance Guide

You should also satisfy yourself that large numbers of dumps are not being
produced.

Furthermore, you should review the effects of and reasons for system outages and
their duration. If there is a series of outages, you may be able to detect a common
cause of them.

Confirming that the system-oriented objectives are reasonable

After the system is initialized and monitoring is operational, you need to find out if
the objectives themselves are reasonable (that is, achievable, given the hardware
available), based upon actual measurements of the workload.

When you measure performance against objectives and report the results to users,
you have to identify any systematic differences between the measured data and
what the user sees. This means an investigation of the differences between internal
(as seen by CICS) and external (as seen by the end user) measures of response
time.

If the measurements differ greatly from the estimates, you must revise application
response-time objectives or plan a reduced application workload, or upgrade your
system. If the difference is not too large, however, you can embark on tuning the

total system. Parts 3 and 4 of this book tell you how to do this tuning activity.

Anticipating and monitoring system changes and growth

No production system is static. Each system is constantly changing because of new
function being added, increased transaction volumes because of a growth in the
number of terminal users, addition of new applications or software components, and
changes to other aspects of the data processing complex (batch, TSO, and so on).
As much as possible, the effects of these changes need to be anticipated, planned
for, and monitored.

To find out what application changes are planned, interviewing system or application
development managers can be useful in determining the effect of new function or
applications and the timing of those changes. Associated with this is the effect of
new software to be installed, as well as the known hardware plans for installing new
equipment.

When a major change to the system is planned, increase the monitoring frequency
before and after the change. A major change includes the addition of:

» A new application or new transactions

* New terminals

* New software releases.

You should look at individual single-thread transactions as well as the overall
behavior of the production system.

If the system performance has altered as a result of a major change to the system,
data for before-and-after comparison of the appropriate statistics provides the best
way of identifying the reasons for the alteration.

Consider having extra tools installed to make it easier to project and test future
usage of the system. Tools such as the Teleprocessing Network Simulator (TPNS)
program can be used to test new functions under volume conditions before they
actually encounter production volumes. Procedures such as these can provide you

Chapter 3. Performance monitoring and review 17

with insight as to the likely performance of the production system when the changes
are implemented, and enable you to plan option changes, equipment changes,
scheduling changes, and other methods for stopping a performance problem from
arising.

18 CICS TS for z/0S: CICS Performance Guide

Part 2. Tools that measure the performance of CICS

This part gives an overview of the various tools that can be used to find out which
resources are in contention.

+ [Chapter 4, “Performance measurement tools: Overview,” on page 21|
[Chapter 5, “Using CICS statistics,” on page 33|

« [Chapter 6, “The CICS monitoring facility,” on page 63|

[Chapter 7, “CICS Performance Analyzer for z/OS (CICS PA),” on page 135
[Chapter 8, “Tivoli Decision Support for z/0S,” on page 157|

[Chapter 9, “Managing Workloads,” on page 167

» |Chapter 10, “Understanding and using RMF workload manager data,” on page
179.

© Copyright IBM Corp. 1983, 2011 19

20 CICS TS for z/OS: CICS Performance Guide

Chapter 4. Performance measurement tools: Overview

This overview discusses methods of measuring performance in the following
sections:

« [‘Tools for obtaining CICS performance data” on page 22
« [“Tools for obtaining operating system performance data” on page 24|

« [‘Tools for obtaining performance data for other products used with CICS” on|
page 29

After reasonable performance objectives have been agreed, you have to set up
methods to determine whether the production system is meeting those objectives.

Performance of a production system depends on the utilization of resources such
as CPU, real storage, ISC links, coupling facility, and the network.

You have to monitor all of these factors to determine when constraints in the system
may develop. A variety of programs could be written to monitor all these resources.
Many of these programs are currently supplied as part of IBM products such as
CICS or IMS/ESA, or are supplied as separate products. This chapter describes
some of the products that can give performance information on different
components of a production system.

The list of products in this chapter is far from being an exhaustive summary of
performance monitoring tools, yet the data provided from these sources comprises
a large amount of information. To monitor all this data is an extensive task.
Furthermore, only a small subset of the information provided is important for
identifying constraints and determining necessary tuning actions, and you have to
identify this specific subset for your particular CICS system.

You also have to bear in mind that there are two different types of tools:
1. Tools that directly measure whether you are meeting your objectives

2. Additional tools to look into internal reasons why you might not be meeting
objectives.

None of the tools can directly measure whether you are meeting end-user response
time objectives. The lifetime of a task within CICS is comparable, that is, usually
related to, response time, and bad response time is usually correlated with long
lifetime within CICS, but this correlation is not exact because of other contributors to
response time.

Obviously, you want tools that help you to measure your objectives. In some cases,
you may choose a tool that looks at some internal function that contributes towards
your performance objectives, such as task lifetime, rather than directly measuring
the actual objective, because of the difficulty of measuring it.

When you have gained experience of the system, you should have a good idea of
the particular things that are most significant in that particular system and,
therefore, what things might be used as the basis for exception reporting. Then, one
way of simply monitoring the important data might be to set up exception-reporting
procedures that filter out the data that is not essential to the tuning process. This
involves setting standards for performance criteria that identify constraints, so that
the exceptions can be distinguished and reported while normal performance data is
filtered out. These standards vary according to individual system requirements and
service level agreements.

© Copyright IBM Corp. 1983, 2011 21

You often have to gather a considerable amount of data before you can fully
understand the behavior of your own system and determine where a tuning effort
can provide the best overall performance improvement. Familiarity with the analysis
tools and the data they provide is basic to any successful tuning effort.

Remember, however, that all monitoring tools cost processing effort to use. Typical
costs are 5% additional processor cycles for the CICS monitoring facility
(performance class), and up to 1% for the exception class. The CICS trace facility
overhead is highly dependent on the workload used. The overhead can be in
excess of 25%.

In general, then, we recommend that you use the following tools in the sequence of
priorities shown below:

1. CICS statistics
2. CICS monitoring data
3. CICS internal and auxiliary trace.

Tools for obtaining CICS performance data

This section covers:

+ [“CICS statistics]

+ [The CICS monitoring facility’]

+ [“The sample statistics program (DFHOSTAT)’]
+ [“CICS trace facilities” on page 23

+ [‘Other CICS data” on page 23|

CICS statistics

CICS statistics are the simplest and the most important tool for permanently
monitoring a CICS system. They collect information on the CICS system as a
whole, without regard to tasks.

The CICS statistics domain writes five types of statistics to SMF data sets: interval,
end-of-day, requested, requested reset, and unsolicited statistics.

Each of these sets of data is described and a more general description of CICS
statistics is given in [Chapter 5, “Using CICS statistics,” on page 33|and |Appendix A)
[‘CICS statistics tables,” on page 413.

The CICS monitoring facility

The CICS monitoring facility collects information about CICS tasks, and is described
more completely in [Chapter 6, “The CICS monitoring facility,” on page 63

|the CICS Customization Guidd contains programming information on the data set
formats, and the CICS Operations and Utilities Guidei describes the monitoring utility
programs, [DFHMNDUP|and [DFH$MOLS]

The sample statistics program (DFHOSTAT)

The sample statistics program, DFHOSTAT, produces a report showing
comprehensive system information about a CICS system, its resources (except for
terminals and FEPI resources), and an overview of the MVS storage in use. The
program also demonstrates the use of the EXEC CICS INQUIRE and EXEC CICS
COLLECT STATISTICS commands to produce an analysis of a CICS system. You

22 CICS TS for z/OS: CICS Performance Guide

can use the sample program as provided or modify it to suit your needs.
lAppendix E, “The sample statistics program, DFHOSTAT,” on page 657| has more
information about the DFHOSTAT program, and lists the reports that it produces.

CICS trace facilities

For the more complex problems that involve system interactions, you can use the
CICS trace to record the progress of CICS transactions through the CICS
management modules. Whereas a dump gives a “snapshot” of conditions at a
particular moment, CICS trace provides a history of events leading up to a specific
situation. CICS includes facilities for selective activation or deactivation of some
groups of traces.

The CICS trace facilities can also be useful for analyzing performance problems
such as excessive waiting on events in the system, or constraints resulting from
inefficient system setup or application program design.

Several types of tracing are provided by CICS, and are described in [the CICS

|Problem Determination Guidel Trace is controlled by:

+ The system initialization parameters (see the CICS System Definition Guide).

+ CETR (see|CICS Supplied Transactions). CETR also provides for trace selectivity
by, for instance, transaction type or terminal name.

+ CEMT SET INTTRACE, CEMT SET AUXTRACE, or CEMT SET GTFTRACE
(see |CICS Supplied Transactions).

» EXEC CICS SET TRACEDEST, EXEC CICS SET TRACEFLAG, or EXEC CICS
SET TRACETYPE (see the CICS System Programming Reference]for
programming information).

Three destinations are available for trace data:
1. The internal trace table, in main storage above the 16MB line
2. Auxiliary trace data sets, defined as BSAM data sets on tape or disk

3. The MVS generalized trace facility (GTF) data sets, which can be accessed
through the MVS interactive problem control system (IPCS).

Other CICS data

The measurement tools previously described do not provide all the data necessary
for a complete evaluation of current system performance. They do not provide
information on how and under what conditions each resource is being used, nor do
they provide information about the existing system configuration while the data is
being collected. It is therefore extremely important to use as many techniques as
possible to get information about the system. Additional sources of information
include the following:

» Hardware configuration

* VTOC listings

» LISTCAT (VSAM)

» CICS table listings, especially:
— SIT (and overrides in the CICS startup procedure)
— FCT (file control table)for any BDAM files

» CICS resource definitions from the CSD file:

— Use the DFHCSDUP LIST command to print resource definitions, groups, and
lists. For information about the CSD file utility program, DFHCSDUP, see
[CICS Operations and Utilities Guidd.

Chapter 4. Performance measurement tools: Overview 23

* Link pack area (LPA) map

* Load module cross-reference of the CICS nucleus

» SYS1.PARMLIB listing

* MVS Workload Manager (WLM) service definition

* MVS System Logger configuration - LOGR couple data set listing

* Dump of the CICS address space. See the CICS Operations and Utilities Guide
for information on how to get an address space dump for CICS when the CICS
address space abends.

e TCP/IP Profile Dataset

This data, used with the data produced by the measurement tools, provides the
basic information that you should have for evaluating your system’s performance.

Tools for obtaining operating system performance data

+ [“System management facility (SMF)’

+ [‘Resource measurement facility (RMF)’]

+ [‘Generalized trace facility (GTF)” on page 26
« [“Tivoli Decision Support for z/OS” on page 2§

System management facility (SMF)

System management facilities (SMF) collects and records system and job-related
information that your installation can use in:

* Billing users

* Reporting reliability

* Analyzing the configuration

» Scheduling jobs

* Summarizing direct access volume activity
» Evaluating data set activity

* Profiling system resource use

* Maintaining system security.

For more information on SMF, see z/0OS MVS System Management Facilities
(SMF).

Resource measurement facility (RMF)

The Resource Measurement Facility (RMF) collects system-wide data that
describes the processor activity (WAIT time), 1/0 activity (channel and device
usage), main storage activity (demand and swap paging statistics), and system
resources manager (SRM) activity (workload).

RMF is a centralized measurement tool that monitors system activity to collect
performance and capacity planning data. The analysis of RMF reports provides the
basis for tuning the system to user requirements. They can also be used to track
resource usage.

RMF measures the following activities:
* Processor usage

* Address space usage

* Channel activity:

24 CICS TS for z/OS: CICS Performance Guide

— Request rate and service time per physical channel
— Logical-to-physical channel relationships
— Logical channel queue depths and reasons for queuing.
» Device activity and contention for the following devices:
— Unit record
— Graphics
— Direct access storage
— Communication equipment
— Magnetic tapes
— Character readers.
» Detailed system paging
* Detailed system workload
* Page and swap data set
* Enqueue
* CF activity
« XCF activity.

RMF allows the z/OS user to:
» Evaluate system responsiveness:

— ldentify bottlenecks. The detailed paging report associated with the page and
swap data set activity can give a good picture of the behavior of a virtual
storage environment.

* Check the effects of tuning:

— Results can be observed dynamically on a screen or by postprocessing
facilities.

» Perform capacity planning evaluation:

— The workload activity reports include the interval service broken down by key
elements such as processor, input/output, and main storage service.

— Analysis of the resource monitor output (for example, system contention
indicators, swap-out broken down by category, average ready users per
domain) helps in understanding user environments and forecasting trends.

— The post-processing capabilities make the analysis of peak load periods and
trend analysis easier.

* Manage the larger workloads and increased resources that MVS can support
 |dentify and measure the usage of online channel paths
» Optimize the usefulness of expanded storage capability.

RMF measures and reports system activity and, in most cases, uses a sampling
technique to collect data. Reporting can be done with one of three monitors:

1. Monitor | measures and reports the use of system resources (that is, the
processor, /0O devices, storage, and data sets on which a job can enqueue
during its execution). It runs in the background and measures data over a
period of time. Reports can be printed immediately after the end of the
measurement interval, or the data can be stored in SMF records and printed
later with the RMF postprocessor. The RMF postprocessor can be used to
generate reports for “exceptions”: conditions where user-specified values are
exceeded.

2. Monitor I, like Monitor I, measures and reports the use of system resources. It
runs in the background under TSO or on a console. It provides “snapshot”

Chapter 4. Performance measurement tools: Overview 25

reports about resource usage, and also allows its data to be stored in SMF
records. The RMF postprocessor can be used to generate exception reports.

3. Monitor Il primarily measures the contention for system resources and the
delay of jobs that such contention causes. It collects and reports the data in real
time at a display station, with optional printed copy backup of individual
displays. Monitor Il can also provide exception reports, but its data cannot be
stored in SMF records. It must be used if XCF or CF reports are needed.

RMF should be active in the system 24 hours a day, and you should run it at a
dispatching priority above other address spaces in the system so that:

* The reports are written at the interval requested

* Other work is not delayed because of locks held by RMF.

A report is generated at the time interval specified by the installation. The largest
system overhead of RMF occurs during the report generation: the shorter the
interval between reports, the larger the burden on the system. An interval of 60
minutes is recommended for normal operation. When you are addressing a specific
problem, reduce the time interval to 10 or 15 minutes. The RMF records can be
directed to the SMF data sets with the NOREPORT and RECORD options; the
report overhead is not incurred and the SMF records can be formatted later.

Note: There may be some discrepancy between the CICS initialization and
termination times when comparing RMF reports against output from the
CICS monitoring facility.

For further details of RMF, see the zZOS Resource Measurement Facility (RMF)
Users Guide, SC28-1949.

In terms of CPU costs this is an inexpensive way to collect performance
information. Shorter reports throughout the day are needed for RMF because a
report of a full day's length includes startup and shutdown and does not identify the
peak period.

Generalized trace facility (GTF)

As described above, CICS trace entries can be recorded via GTF, and reports
produced via IPCS. More generally, GTF is an integral part of the MVS system, and
traces the following system events: DASD seek addresses on start I/O instructions,
system resources manager (SRM) activity, page faults, I/O activity, and supervisor
services. Execution options specify the system events to be traced. The amount of
processing time to be used by GTF can vary considerably, depending on the
number of events to be traced. You should request the time-stamping of GTF
records with the TIME=YES operand on the EXEC statement for all GTF tracing.

GTF should run at a dispatching priority (DPRTY) of 255 so that records are not
lost. If GTF records are lost and the DPRTY is specified at 255, specify the BUF
operand on the execute statement as greater than 10 buffers.

GTF is generally used to monitor short periods of system activity and you should
run it accordingly.

You can use these options to get the data normally needed for CICS performance
studies:

26 CICS TS for z/OS: CICS Performance Guide

GTF reports

TRACE=SYS,RNIO,USR (VTAM)
TRACE=SYS (Non-VTAM)

If you need data on the units of work dispatched by the system and on the length of
time it takes to execute events such as SVCs, LOADs, and so on, the options are:

TRACE=SYS, SRM,DSP,TRC,PCI,USR,RNIO

The TRC option produces the GTF trace records that indicate GTF interrupts of
other tasks that it is tracing. This set of options uses a higher percentage of
processor resources, and you should use it only when you need a detailed analysis
or timing of events.

No data-reduction programs are provided with GTF. To extract and summarize the
data into a meaningful and manageable form, you can either write a data-reduction
program or use one of the program offerings that are available.

For further details, see the [z70S MVS Diagnosis: Tools and Service Aidg

You can produce reports from GTF data using the interactive problem control
system (IPCS). The reports generated by IPCS are useful in evaluating both system
and individual job performance. It produces job and system summary reports as
well as an abbreviated detail trace report. The summary reports include information
on MVS dispatches, SVC usage, contents supervision, /O counts and timing, seek
analysis, page faults, and other events traced by GTF. The detail trace reports can
be used to follow a transaction chronologically through the system.

Other reports are available that:

* Map the seek addresses for a specific volume

* Map the arm movement for a specific volume

* Map the references to data sets and members within partitioned data sets
* Map the page faults and module reference in the link pack area (LPA).

These reports are described later in this section.

Before GTF is run, you should plan the events to be traced. If specific events such
as start 1/0s (SIOs) are not traced, and the SIO-1/O timings are required, the trace
must be re-created to get the data needed for the reports.

If there are any alternative paths to a control unit in the system being monitored,
you should include the PATHIO input statement in the report execution statement.
Without the PATHIO operand, there are multiple 1/O lines on the report for the
device with an alternative path: one line for the primary device address and one for
the secondary device address. If this operand is not included, the 1/Os for the
primary and alternate device addresses have to be combined manually to get the
totals for that device.

Seek histogram report

The seek histogram report (SKHST) can help you find out if there is any arm
contention on that volume, that is, if there are any long seeks on the volume being
mapped. It produces two reports: the first shows the number of seeks to a particular
address, and the second shows the distance the arm moves between seeks. These
reports can be used to determine if you should request a volume map report to
investigate further the need to reorganize a specific volume.

Chapter 4. Performance measurement tools: Overview 27

Volume map report

The volume map report (VOLMAP) displays information about data sets on the
volume being mapped and about seek activity to each data set on that volume. It
also maps the members of a partitioned data set and the count of seeks issued to
each member. This report can be very useful in reorganizing the data sets on a
volume and in reorganizing the members within a partitioned data set to reduce the
arm movement on that specific volume.

Reference map report

The reference map report (REFMAP) shows the page fault activity in the link pack
area (LPA) of MVS. This reference is by module name and separates the data
faults from the instruction faults. The report also shows the count of references to
the specific module. This reference is selected from the address in the stored PSW
of the 1/0 and EXT interrupt trace events from GTF. This report can be useful if you
want to make changes to the current MVS pack list in order to reduce real storage
or to reduce the number of page faults that are being encountered in the pageable
link pack area of MVS.

Tivoli Decision Support for z/0S
Tivoli Decision Support for z/OS is an IBM product that collects and analyzes data
from CICS and other IBM systems and products. With Tivoli Decision Support you
can build reports which help you with the following:
» System overviews
+ Service levels
* Availability
» Performance and tuning
» Capacity planning
» Change and problem management
* Accounting.

A large number of ready-made reports are available, and in addition you can
generate your own reports to meet specific needs.

In the reports Tivoli Decision Support uses data from CICS monitoring and
statistics. Tivoli Decision Support also collects data from the MVS system and from
products such as RMF, TSO, IMS and NetView®. This means that data from CICS
and other systems can be shown together, or can be presented in separate reports.

Reports can be presented as plots, bar charts, pie charts, tower charts, histograms,
surface charts, and other graphic formats. Tivoli Decision Support for z/OS passes
the data and formatting details to Graphic Data Display Manager (GDDM®) which
does the rest. Tivoli Decision Support can also produce line graphs and histograms
using character graphics where GDDM is not available, or the output device does
not support graphics. For some reports, where you need the exact figures, numeric
reports such as tables and matrices are more suitable.

See |Chapter 8, “Tivoli Decision Support for z/OS,” on page 157| for more information
about Tivoli Decision Support for z/OS as a CICS performance measurement tool.

28 CICS TS for z/OS: CICS Performance Guide

Tools for obtaining performance data for other products used with
CICS

» [“Virtual telecommunication access method (VTAM) trace”l
* |‘VTAM storage management (SMS) trace’]

. [vTam tuning statistics”
» |“Tivoli NetView Performance Monitor (NPM)"|
* [[LISTCAT (VSAM)” on page 30|

* |"'DB monitor (IMS)” on page 30
« [‘Program isolation (PI) trace” on page 30|

« [IMS Performance Analyzer (IMS PA)” on page 31|
» |'DB2 Performance Monitor for z/OS” on page 31
» |“Teleprocessing network simulator (TPNS)” on page_32|

This section gives an overview of the tools that can be used to monitor information
on various access methods and other programs used with CICS and the operating
system.

ACF/NTAM

ACF/VTAM (program number 5735-RC2) provides information about buffer usage
either to GTF in SMF trace data or to the system console through DISPLAY and
BFRUSE commands. Other tuning statistics can also be recorded on the system
console through the MODIFY procname, TNSTAT command. (This command is
described in the ACF/VTAM Diagnostic Techniques manual.)

Virtual telecommunication access method (VTAM) trace

The VTAM trace facility is provided as part of VTAM, and tracks messages through
different points to and from CICS. The time-stamps that are included can be
particularly useful in determining where a transaction spends large amounts of time.

VTAM storage management (SMS) trace

The VTAM storage management (SMS) trace facility collects information on VTAM’s
usage of its buffers, including which buffers are used in the various buffer pools,
and the number of buffer expansions and depletions.

VTAM tuning statistics

Information provided in the VTAM tuning statistics includes data on the performance
between VTAM and the network control program (NCP), the number of reads and
writes and what caused that activity, and message counts.

Tivoli NetView Performance Monitor (NPM)

The Tivoli NetView Performance Monitor (NPM) program product (program number
5655-043) is designed to aid network support personnel in managing VTAM-based
communications networks. It collects and reports on data in the host and NCP.

NPM data can be used to:

 Identify network traffic bottlenecks

» Display screens showing volume and response times for various resources
» Generate color graphs of real-time and historical data

Chapter 4. Performance measurement tools: Overview 29

» Alert users to response time threshold exceptions.

NPM performance data can also help to:
» Determine the performance characteristics of a network and its components
* |dentify network performance problems

» Tune communications networks for better performance as well as verify the
effects of problem resolutions

» Gauge unused capacity when planning for current network changes

* Produce timely and meaningful reports on network status for multiple levels of
management.

Further information on NPM is given in Tivoli NetView Performance Monitor
Concepts and Planning, GH19-6961.

LISTCAT (VSAM)

VSAM LISTCAT provides information that interprets the actual situation of VSAM

data sets. This information includes counts of the following:

* Whether and how often control interval (Cl) or control area (CA) splits occur
(splits should occur very rarely, especially in CA).

* Physical accesses to the data set.

» Extents for a data set (secondary allocation). You should avoid this secondary
allocation, if possible, by making the primary allocation sufficiently large.

* Index levels.

Virtual storage access method (VSAM) or ICF catalog
Information kept in the VSAM or Integrated Catalog Facility (ICF) catalog includes
items on record sizes, data set activity, and data set organization.

DB monitor (IMS)

The IMS DB monitor report print program (DFSUTR30) provides information on
batch activity (a single-thread environment) to IMS databases, and is activated
through the DLMON system initialization parameter. As in the case of CICS auxiliary
trace, this is for more in-depth investigation of performance problems by
single-thread studies of individual transactions.

The DB monitor cannot be started and stopped from a terminal. After the DB
monitor is started in a CICS environment, the only way to stop it is to shut down
CICS. The DB monitor cannot be started or stopped dynamically.

When the DB monitor runs out of space on the IMSMON data set, it stops
recording. The IMSMON data set is a sequential data set, for which you can
allocate space with IEFBR14. The DCB attributes are:

DCB=(RECFM=VB, LRECL=2044 ,BLKSIZE=2048)

If you are running the DB monitor in a multithread (more than one) environment, the
only statistics that are valid are the VSAM buffer pool statistics.

Program isolation (PI) trace

The program isolation (PI) trace can point out database contention problems arising
from the nature of task’s access to a particular database. Because only one task
can have access to a record at one time, and any other task waits till the record is

30 CICS TS for z/0S: CICS Performance Guide

freed, high contention can mean high response time. This trace is part of IMS, and
can be activated by the CEMT SET PITRACE ONIOFF command. Information on
the format of the PI trace report is given in the IMS/ESA Version 3 System
Administration Guide.

IMS Performance Analyzer (IMS PA)

IMS Performance Analyzer (program number 5655—E15) is a performance analysis
and tuning aid for database and transaction manager systems for IMS. It processes
IMS log and monitor data, including Fast Path data, to provide comprehensive
performance, usage and availability reports that help you to analyze and tune your
IMS systems.

IMS PA:

» Uses log and monitor data to produce comprehensive DBCTL reports showing
application and internal resource utilization, CPU usage, and full function and
Fast Path database activity

» Uses IMS log data to produce comprehensive information about transit times
(actual system performance time), and IMS resource usage and availability

» Creates extracts of transit time by time interval data, which can be graphed,
exported for processing by external programs, or downloaded to a PC

» Creates extracts of total transaction traffic and exception transactions (MSGQ or
Fast Path), for direct import by external programs

* Processes logs from a single IMS system, or from multiple IMS subsystems
running in a sysplex and using shared queues

* Uses monitor data to produce summary and analysis reports for regions,
resources, programs, transactions, databases, and the total system, organized by
level of detail and area of analysis

For further information, see the IMS Performance Analyzer Report Analysis
(document number SC27-0913).

DB2 Performance Monitor for z/0S

DB2 Performance Monitor for z/OS (program number 5655-E61) analyses DB2
performance data and generates a comprehensive set of reports. These include the
following:

» A set of graphs showing DB2 statistics, accounting, and frequency distribution
performance data

* A summary of DB2 system activity, including system tasks (statistics data)

* A summary of DB2 application work, reported either by user or by application
(accounting data)

» A set of transit time reports detailing DB2 workload performance

» System- and application-related DB2 I/O activity

» Locking activity, reported both by DB2 application type and by database
« SQL activity

+ Selective tracing and formatting of DB2 records.

For further information, see the DB2 Performance Monitor for z/OS Reporting User's
Guide, SC27-1651.

Chapter 4. Performance measurement tools: Overview 31

Teleprocessing network simulator (TPNS)

The Teleprocessing Network Simulator (TPNS) (program number 5662-262) is a
program that simulates terminal activity such as that coming through the NCP.
TPNS can be used to operate an online system at different transaction rates, and
can monitor system performance at those rates. TPNS also keeps information on
response times, which can be analyzed after a simulation.

Further information on TPNS is given in the Teleprocessing Network Simulator
(TPNS) General Information manual.

32 CICS TS for z/OS: CICS Performance Guide

Chapter 5. Using CICS statistics

This chapter discusses CICS statistics in the following sections. Methods for
collecting statistics are described, and statistics that can be used for tuning your
CICS system are included.

« [Introduction to CICS statistics’]
« [‘Processing CICS statistics” on page 39
* [“Interpreting CICS statistics” on page 39

Introduction to CICS statistics

CICS management modules control how events are managed by CICS. As events
occur, CICS produces information that is available to you as system and resource
statistics.

The resources controlled by CICS include files, databases, journals, transactions,
programs, and tasks. Resources that CICS manages, and values that CICS uses in
its record-keeping role, are defined in one of the following ways:

* Online, by the CICS CEDA transaction.

« Offline, by the CICS system definition (CSD) utility program, DFHCSDUP. See
[the CICS Customization Guide|for programming information about DFHCSDUP.

» Offline, by CICS control table macros.

Statistics are collected during CICS online processing for later offline analysis. The
statistics domain writes statistics records to a System Management Facilities (SMF)
data set. The records are of SMF type 110, sub-type 002. Monitoring records and
some journaling records are also written to the SMF data set as type 110 records.
You might find it useful to process statistics and monitoring records together. For
programming information about SMF, and about other SMF data set considerations,
see [the CICS Customization Guide,

Types of statistics data
CICS produces five types of statistics:

Interval statistics
Are gathered by CICS during a specified interval. You can change the
interval value using the STATINT system initialization parameter, or using
CEMT SET STATISTICS, or using the EXEC CICS SET STATISTICS
command. CICS writes the interval statistics to the SMF data set
automatically at the expiry of the interval if:

 Statistics recording status was set ON by the STATRCD system
initialization parameter (and has not subsequently been set OFF by a
CEMT or EXEC CICS SET STATISTICS RECORDING command). The
default is STATRCD=OFF.

* ON is specified in CEMT SET STATISTICS.
* The RECORDING option of the EXEC CICS SET STATISTICS command
is set to ON.

End-of-day statistics
Are a special case of interval statistics where all statistics counters are
collected and reset. There are three ways to get end-of-day statistics:

* The end-of-day expiry time

© Copyright IBM Corp. 1983, 2011 33

* When CICS quiesces (normal shutdown)

* When CICS terminates (immediate shutdown).

The end of day value defines a logical point in the 24 hour operation of
CICS. You can change the end of day value using the STATEOD system
initialization parameter, or using CEMT SET STATISTICS, or using the
EXEC CICS SET STATISTICS command. End-of-day statistics are always

written to the SMF data set, regardless of the settings of any of the
following:

* The system initialization parameter, STATRCD, or

* CEMT SET STATISTICS or

» The RECORDING option of EXEC CICS SET STATISTICS.

The statistics that are written to the SMF data set are those collected since
the last event which involved a reset. The following are examples of resets:
* At CICS startup

* Issue of RESETNOW RECORDNOW in CEMT or EXEC CICS
STATISTICS commands.

* Interval statistics
The default end-of-day value is 000000 (midnight).

End-of-day statistics are always written to the SMF data set, regardless of
the settings of any of the following:

» The system initialization parameter, STATRCD, or
e CEMT SET STATISTICS or
» The RECORDING option of EXEC CICS SET STATISTICS.

Requested statistics
are statistics that the user has asked for by using one of the following
commands:

+ CEMT PERFORM STATISTICS RECORD
+ EXEC CICS PERFORM STATISTICS RECORD
« EXEC CICS SET STATISTICS ONIOFF RECORDNOW.

These commands cause the statistics to be written to the SMF data set
immediately, instead of waiting for the current interval to expire. The
PERFORM STATISTICS command can be issued with any combination of
resource types or you can ask for all resource types with the ALL option.
For more details about CEMT commands see [CICS Supplied Transactions;
for programming information about the equivalent EXEC CICS commands,
see the CICS System Programming Referencel

Requested reset statistics
differ from requested statistics in that all statistics are collected and
statistics counters are reset. You can reset the statistics counters using the
following commands:
+ CEMT PERFORM STATISTICS RECORD ALL RESETNOW
+ EXEC CICS PERFORM STATISTICS RECORD ALL RESETNOW
+ EXEC CICS SET STATISTICS ONIOFF RESETNOW RECORDNOW

The PERFORM STATISTICS command must be issued with the ALL option
if RESETNOW is present.

You can also invoke requested reset statistics when changing the recording
status from ON to OFF, or vice versa, using CEMT SET STATISTICS

34 CICS TS for z/OS: CICS Performance Guide

ONIOFF RECORDNOW RESETNOW, or EXEC CICS SET STATISTICS
ONIOFF RECORDNOW RESETNOW.

Note: It is valid to specify RECORDNOW RESETNOW options only when
there is a genuine change of status from STATISTICS ON to OFF, or
vice versa. In other words, coding EXEC CICS SET STATISTICS ON
RECORDNOW RESETNOW when statistics is already ON will cause

an error response.

RESETNOW RECORDNOW on the SET STATISTICS command can only
be invoked if the RECORDING option is changed.

Note: Issuing the RESETNOW command by itself in the SET STATISTICS
command causes the loss of the statistics data that has been
collected since the last interval. Interval collections take place only if
you set the RECORDING status ON. To set the statistics recording
status ON or OFF, use either the RECORDING option on this
command or the SIT parameter STATRCD. Statistics are always
written, and counts reset, at the end of day.

RECORDING ON
— Expiry of INTERVAL

Resets counters

7

Writes to the SMF data set

EXEC CICS PERFORM STATISTICS
Writes to the SMF data set

Resets counters only

If ALL(RESETNOW)

—— CEMT PERFORM STATISTICS
Writes to the SMF data set
Resets counters only

If ALL and RESETNOW specified

Expiry of ENDOFDAY
Writes to SMF data set
Resets counters

RECORDING OFF
— Expiry of INTERVAL
No action

7

EXEC CICS PERFORM STATISTICS
Writes to the SMF data set

Resets counters only

If ALL(RESETNOW)

—— CEMT PERFORM STATISTICS
Writes to the SMF data set
Resets counters only
If ALL and RESETNOW specified

Expiry of ENDOFDAY
Writes to SMF data set
Resets counters

| |] | |
08 09 10 11 12 13

1
Resetting statistics counters

Figure 1. Summary of statistics reset functions

Unsolicited statistics
are automatically gathered by CICS for dynamically allocated

Chapter 5. Using CICS statistics 35

36 CICS TS for z/0S: CICS Performance Guide

and deallocated resources. CICS writes these statistics to
SMF just before the resource is deleted regardless of the
status of statistics recording.

Unsolicited statistics are produced for:

Autoinstalled terminals
Whenever an autoinstalled terminal entry in the TCT
is deleted (after the terminal logs off), CICS collects
statistics covering the autoinstalled period since the
last interval. The period covers any delay interval
specified by the system initialization parameter,
AILDELAY.

If an autoinstall terminal logs on again before the
expiry of the delay interval, the accumulation of
statistics continues until the next interval. At that
interval, the accumulation of statistics is restarted.

CorbaServer
Whenever a CorbaServer is discarded, CICS collects
the statistics for that CorbaServer covering the
period from the last interval.

DBCTL
Whenever CICS disconnects from DBCTL, CICS
collects the statistics covering the whole of the
DBCTL connection period.

DB2 Whenever CICS disconnects from DB2, CICS
collects the statistics for the DB2 connection and all
DB2ENTRYs covering the period from the last
interval.

Whenever a DB2ENTRY is discarded, CICS collects
the statistics for that DB2ENTRY covering the period
from the last interval.

FEPI connection
Unsolicited connection statistics are produced when
a connection is destroyed. This could occur when a
DISCARD TARGET, DISCARD NODE, DISCARD
POOL, DELETE POOL, DISCARD NODELIST, or
DISCARD TARGETLIST command is used.

FEPI pools
Unsolicited pool statistics are produced when a pool
is discarded by using the DISCARD POOL or
DELETE POOL command.

FEPI targets
Unsolicited target statistics are produced when a
target is destroyed or removed from a pool. This
occurs when a DELETE POOL, DISCARD POOL,
DISCARD TARGET, or DISCARD TARGETLIST
command is used.

Files Whenever CICS closes a file, CICS collects statistics
covering the period from the last interval.

Journalnames
Unsolicited journalname statistics are produced when

a journalname is discarded by using the DISCARD
JOURNALNAME command.

Logstreams
Unsolicited logstream statistics are produced when
the logstream is discarded from the MVS system
logger.

LSRpools
When CICS closes a file which is in an LSRpool,
CICS collects the statistics for the LSRpool. The
following peak values are reset at each interval
collection:

* Peak number of requests waiting for a string

¢ Maximum number of concurrent active file control
strings.

The other statistics, which are not reset at an interval
collection, cover the entire period from the time the
LSRpool is created (when the first file is opened)
until the LSRpool is deleted (when the last file is
closed).

Programs
When an installed program definition is discarded,
CICS collects the statistics covering the installed
period since the last interval.

Requestmodel
Whenever a Requestmodel is discarded, CICS
collects the statistics for that Requestmodel covering
the period since the last interval.

TCP/IP Services
Whenever CICS closes a TCP/IP service, CICS
collects the statistics covering the period since the
last interval.

Transactions
When an installed transaction definition is discarded,
CICS collects the statistics covering the installed
period since the last interval.

Transaction classes
When an installed transaction class definition is
discarded, CICS collects the statistics covering the
installed period since the last interval.

Transient data queues
Unsolicited transient data queue statistics are
produced when a transient data queue is discarded
by using DISCARD TDQUEUE, or when an
extrapartition transient data queue is closed.

Note: To ensure that accurate statistics are recorded unsolicited statistics (USS)
must be collected. An unsolicited record resets the statistics fields it contains.
In particular, during a normal CICS shutdown, files are closed before the end
of day statistics are gathered. This means that file and LSRpool end-of-day
statistics will be zero, while the correct values will be recorded as unsolicited
statistics.

Chapter 5. Using CICS statistics 37

Resetting statistics counters

When statistics are written to the SMF data set, the counters are reset in one of the
following ways:

* Reset to zero

* Reset to 1

* Reset to current values (this applies to peak values)
* Are not reset

» Exceptions to the above.

For detailed information about the reset characteristics, see|Appendix A, “CICS|
Istatistics tables,” on page 413,

The arrival of the end-of-day time, as set by the ENDOFDAY parameters, always
causes the current interval to be ended (possibly prematurely) and a new interval to
be started. Only end-of-day statistics are collected at the end-of-day time, even if it
coincides exactly with the expiry of an interval.

Changing the end-of-day value changes the times at which INTERVAL statistics are
recorded immediately. In the example below, when the end-of-day is changed from
midnight to 1700 just after 1400, the effect is for the interval times to be calculated
from the new end-of-day time. Hence the new interval at 1500 as well as for the
times after new end-of-day time.

When you change any of the INTERVAL values (and also when CICS is initialized),
the length of the current (or first) interval is adjusted so that it expires after an
integral number of intervals from the end-of-day time.

These rules are illustrated by the following example. / indicates an interval recording
and E indicates an end-of-day recording.

—— CICS initialized with
ENDOFDAY (000000)
INTERVAL(030000)

Change to
INTERVAL(020000)

Change to
ENDOFDAY (170000)

\ \ \ | \ \ \ \ \ \
08 09 10 11 12 13 14 15 16 17
| 1 l l | E

18 1

— O]
n
o
N

J— |

Figure 2. Resetting statistics counters

If you want your end-of-day recordings to cover 24 hours, set INTERVAL to 240000.

Note: Interval statistics are taken precisely on a minute boundary. Thus users with
many CICS regions on a single MVS image could have every region writing
statistics at the same time, if you have both the same interval and the same
end of day period specified. This could cost up to several seconds of the
entire CPU. If the cost becomes too noticeable, in terms of user response
time around the interval expiry, you should consider staggering the intervals.
One way of doing this while still maintaining very close correlation of
intervals for all regions is to use a PLT program like the supplied sample

38 CICS TS for z/0S: CICS Performance Guide

DFHS$STED which changes the end-of-day, and thus each interval expiry
boundary, by a few seconds. See|the CICS Operations and Utilities Guide
for further information about DFH$STED.

Setting STATRCD=OFF reduces the number of times that statistics are written to
the SMF data set and the counters are reset to the end-of-day, unsolicited, and
requested reset only."

Processing CICS statistics

You can process CICS statistics in the following ways:

1.

Use the CICS DFHSTUP offline utility. DFHSTUP, prepares and prints reports
offline, using the CICS statistics data recorded on the MVS system

management facilities (SMF) SYS1.MANXx data sets. For guidance about
retrieving CICS statistics from SMF, and about running DFHSTUP, see
[Operations and Utilities Guide,

Create your own statistics reports using the DFHSTUP extract statistics
reporting facility. This provides a DFHSTUP exit that sends CICS statistics data
to a user program that can process statistics records to create tailored reports.
These reports should be easy to review on a daily basis; avoiding the need to
work through large amounts of data to determine if some corrective or
preventative tuning action is required. It should also be possible to identify the
specific CICS regions, the time of day, and the type of CICS resources that may
require further specific in-depth performance analysis. DFHOSTXR is a sample
program designed to exploit the extract reporting function. You can use the
sample program as supplied, or as a model on which to base your own
programs. For guidance about using the extract reporting facility, see
[Operations and Utilities Guide,

Write your own program to report and analyze the statistics. For details about
the statistics record types, see the assembler DSECTs named in each set of
statistics. For programming information about the formats of CICS statistics
SMF records, see|the CICS Customization Guide

Use the sample statistics program (DFHOSTAT). You can use the statistics
sample program, DFHOSTAT, to produce online reports from the CICS statistics
data. The program demonstrates the use of the EXEC CICS INQUIRE and
EXEC CICS COLLECT STATISTICS commands to produce an analysis of a
CICS system. You can use the sample program as provided or modify it to suit
your needs. For more information, see |Appendix E, “The sample statisticg
[program, DFHOSTAT,” on page 657

Use CICS Performance Analyzer to produce reports and extracts using CICS
Monitoring Facility performance and exception records. For more information,
see |Chapter 7, “CICS Performance Analyzer for z/OS (CICS PA),” on page 135.|

Use Tivoli Decision Support to process CICS SMF records to produce joint
reports with data from other SMF records. For more information, see [Chapter 8,

[“Tivoli Decision Support for z/OS,” on page 157/

Interpreting CICS statistics

In the following sections, as indicated in[Table 1 on page 40} guidance is given to
help with the interpretation of the statistics report. Information is presented in the
order that it appears in the DFHSTUP report. Some headings have been omitted
where they have little or no performance impact. Detailed information about the
statistics tables is given in[Appendix A, “CICS statistics tables,” on page 413 The
DFHSTUP report does not include information on the shared temporary storage

Chapter 5. Using CICS statistics 39

queue server, the coupling facility data tables server, or the named counter
sequence number server (see [‘Interpreting server statistics” on page 62| for
references).

Table 1. Performance statistics types
Statistic type
CICS DB2 statistics

CorbaServer statistics

[/
[1']
(1]

Dispatcher statistics

Dump statistics

Enqueue domain statistics

Front end programming interface statistics
File statistics

ISC/IRC attach time statistics
ISC/IRC system and mode entry statistics
Journalname and logstream statistics
JVM statistics

Loader statistics

LSRpool statistics

Program statistics

Recovery manager statistics
Requestmodel statistics

Statistics domain statistics

Storage manager statistics
Temporary storage statistics

Terminal statistics

Transaction class statistics
Transaction manager statistics
Transaction statistics

Transient data statistics

User domain statistics

VTAM statistics

Web and TCP/IP statistics

2] (& [3] & 2] B 2] R] (& & B E] =] & E E] & @ @ E @ E E E R E

Interpreting statistics domain statistics

Statistics recording on to an SMF data set can be a very CPU-intensive activity. The
amount of activity depends more on the number of resources defined than the
extent of their use. This may be another reason to maintain CICS definitions by
removing redundant or over-allocated resources.

For more information about the statistics domain statistics, see page

40 CICS TS for z/OS: CICS Performance Guide

Interpreting transaction manager statistics

The “Times the MAXTASK limit reached” indicates whether MXT is constraining
your system, or any possible integrity exposures are resulting from forced
resolutions of UOWs relating to the transactions. The only time that you may need
to constrain your system in this way is to reduce virtual storage usage. As most
CICS virtual storage is above the 16MB line you may be able to run your system
without MXT constraints, but note that CICS does preallocate storage, above and
below the 16MB line, for each MXT whether or not it is used. Changing MXT affects
your calculations for the dynamic storage areas. See |“Setting the maximum taskl
Ispecification (MXT)” on page 357| for more information.

For more information about transaction manager statistics, see page

Interpreting transaction class (TRANCLASS) statistics

If you are never at the limit of your transaction class setting then you might consider
resetting its value, or review whether there is any need to continue specifying any
transaction types with that class.

For more information, see the transaction class statistics on page @

Interpreting dispatcher statistics

TCB statistics

For more information about dispatcher statistics, see page

The “Accum CPU time/TCB” is the amount of CPU time consumed by each CICS
TCB since the last time statistics were reset. Totaling the values of “Accum time in
MVS wait” and “Accum time dispatched” gives you the approximate time since the
last time CICS statistics were reset. The ratio of the “Accum CPU time /TCB” to this
time shows the percentage usage of each CICS TCB. The “Accum CPU time/TCB”
does not include uncaptured time, thus even a totally busy CICS TCB would be
noticeably less than 100% busy from this calculation. If a CICS region is more than
70% busy by this method, you are approaching that region’s capacity. The 70%
calculation can only be very approximate, however, depending on such factors as
the workload in operation, the mix of activity within the workload, and which release
of CICS you are currently using. Alternatively, you can calculate if your system is
approaching capacity by using RMF to obtain a definititve measurement, or you can
use RMF with your monitoring system. For more information, see the zZOS
Resource Measurement Facility Performance Management Guide, SC33-7992.

Note: “Accum time dispatched” is NOT a measurement of CPU time because MVS
can run higher priority work, for example, all I/O activity and higher priority
regions, without CICS being aware.

Modes of TCB are as follows:

QR There is always one quasi-reentrant mode TCB. It is used to run
quasi-reentrant CICS code and non-threadsafe application code.

FO There is always one file-owning TCB. It is used for opening and closing
user data sets.

RO There is always one resource-owning TCB. It is used for opening and
closing CICS data sets, loading programs, issuing RACF® calls, etc.

Chapter 5. Using CICS statistics 41

co

D2

SZ
RP
J8
J9
JM

L8

L9

X8

X9

SO
SL
S8

SP

The optional concurrent mode TCB is used for processes which can safely
run in parallel with other CICS activity such as VSAM requests. The SIT
keyword SUBTSKS has been defined to have numeric values (0 and 1) to
specify whether there is to be a CO TCB.

The D2 mode TCB is used to terminate DB2 protected threads. Protected
threads are terminated in the normal purge cycle, or when a user issues the
DSNC DISCONNECT plan-name command, which causes the protected
threads for a plan to be terminated immediately. Mode D2 is only used in
CICS Transaction Server for z/OS, Version 2 Release 2 or later, when CICS
is connected to DB2 Version 6 or later.

The single optional SZ mode TCB is used by the FEPI interface.
The single optional RP mode TCB is used to make ONC/RPC calls.
A J8 mode TCB is used to run a JVM in CICS key.

A J9 mode TCB is used to run a JVM in user key.

JM mode TCBs are used by the JVM that initializes the shared class cache.
There is one JM TCB for each shared class cache, including the current
shared class cache, any shared class cache that is being started or
reloaded, and any old shared class caches in the region that are waiting for
worker JVMs that are dependent on them to be phased out.

A task has an L8 mode TCB for its sole use when it invokes a program that
has been enabled with the OPENAPI option and is defined with
EXECKEY=CICS, or when it invokes a task-related user exit program that
has been enabled with the OPENAPI option. This includes the CICS DB2
adaptor, when CICS connects to DB2 Version 6 or later.

A task has an L9 mode TCB for its sole use when it invokes a program that
has been enabled with the OPENAPI option, and is defined with
EXECKEY=USER.

A task has an X8 mode TCB for its sole use when it invokes a C or C++
program that has been compiler with the XPLINK compiler option, and is
defined with EXECKEY=CICS.

A task has an X9 mode TCB for its sole use when it invokes a C or C++
program that has been compiler with the XPLINK compiler option, and is
defined with EXECKEY=USER.

The SO mode TCB is used to make calls to the sockets interface of TCP/IP.
The SL mode TCB is used to wait for activity on a set of listening sockets.

A task uses an S8 TCB if it needs to use the system Secure Sockets Layer.
The TCB is only used for the duration of the SSL negotiation. When the
negotiation is complete, the TCB is released back into the SSL pool to be
reused.

The SP mode TCB is used for socket pthread owning tasks. It manages the
SSL pool of S8 TCBs and owns the Language Environment enclave that
contains the SSL cache.

Dispatcher TCB Pool statistics and JVMs

The Dispatcher TCB Pool statistics for the JVM TCB pool show the number of
requests in a given interval that had to wait for a free J8 or J9 TCB (in the statistics
field Total Attaches delayed by Max TCB Pool Limit). The total wait time is shown in
the statistics field "Total Max TCB Pool Limit delay time'.

42 CICS TS for z/OS: CICS Performance Guide

If the interval includes the time when the JVMs were initialized, it is likely that the
waits occurred while the JVMs were starting. You can verify this by comparing the
statistics to those for an interval later in the day, when the JVMs have been
initialised and have reached a steady state.

The statistics field 'Peak attaches delayed by Max TCB Pool limit' shows the peak
number of concurrent requests to run a JVM program that could not be satisfied
because no JVM was available. Again, you can expect this field to be high while the
JVMs are starting.

The statistics for mismatch waits show the numbers of requests that waited
because there was no TCB available matching the request, but there was at least
one non-matching free TCB. For the JVM pool, this shows the requests that waited
for a TCB of the correct mode (J8 or J9) and JVM profile.|"How CICS aIIocatesl
UVMs to applications" in Java Applications in CICY explains how CICS manages
mismatch waits.

The JVM Pool statistics provide further information about activity in the JVM pool.
See [Interpreting JVM statistics” on page 50| for more information about these
statistics.

Interpreting recovery manager statistics

Recovery manager statistics detail the syncpoint activity of all the transactions in
the system. From these statistics you can assess the impact of shunted UOWSs
(units of work that suffered an indoubt failure and are waiting for resynchronization
with their recovery coordinator, or for the problem with the resources to be
resolved). Shunted UOWs still hold locks and enqueues until they are resolved.
Statistics are available on any forced resolutions of shunted UOWSs to help assess
whether any integrity exposures may have been introduced. The current activity and
the activity since the last reset are available.

For more information, see the CICS statistics tables on page [51]

Interpreting enqueue statistics

The enqueue domain supports the CICS recovery manager. Enqueue statistics
contain the global data collected by the enqueue domain for enqueue requests.

Waiting for an enqueue on a resource can add significant delays in the execution of
a transaction. The enqueue statistics allow you to assess the impact of waiting for
enqueues in the system and the impact of retained enqueues on waiters. Both the
current activity and the activity since the last reset are available.

For more information, see the CICS statistics tables on page @

Interpreting storage manager statistics

Dynamic program compression releases programs which are not being used
progressively as storage becomes shorter. However, short-on-storage conditions
can still occur and are reported as “Times went short on storage”. If this value is not
zero you might consider increasing the size of the dynamic storage area. Otherwise
you should consider the use of MXT and transaction classes to constrain your
system’s virtual storage.

Chapter 5. Using CICS statistics 43

Storage manager requests “Times request suspended”, and “Times cushion
released”, indicate that storage stress situations have occurred, some of which may
not have produced a short-on-storage condition. For example, a GETMAIN request
may cause the storage cushion to be released. However, loader can compress
some programs, obtain the cushion storage, and avoid the short-on-storage
condition.

Note: In the task subpools section, the “Current elem stg” is the number of bytes
actually used while “Current page stg” is the number of pages containing one
or more of these bytes.

For more information, see the CICS statistics tables on page @

Interpreting loader statistics

“Average loading time” = “Total loading time” / “Number of library load requests”.
This indicates the response time overhead suffered by tasks when accessing a
program which has to be brought into storage. If “Average loading time” has
increased over a period, consider MVS library lookaside usage. “Not-in-use”
program storage is freed progressively so that the “Amount of the dynamic storage
area occupied by not in use programs”, and the free storage in the dynamic storage
area are optimized for performance. Loader attempts to keep not-in-use programs
in storage long enough to reduce the performance overhead of reloading the
program. As the amount of free storage in the dynamic storage decreases, the
not-in-use programs are freemained in order of those least frequently used to avoid
a potential short-on-storage condition.

Note: The values reported are for the instant at which the statistics are gathered
and vary since the last report.

“Average Not-In-Use queue membership time” = “Total Not-In-Use queue
membership time” / “Number of programs removed by compression”. This is an
indication of how long a program is left in storage when not in use before being
removed by the dynamic program storage compression (DPSC) mechanism. If the
interval between uses of a program, that is, interval time divided by the number of
times used in the interval, is less than this value, there is a high probability that the
program is in storage already when it is next required.

Note: This factor is meaningful only if there has been a substantial degree of
loader domain activity during the interval and may be distorted by startup
usage patterns.

“Average suspend time” = “Total waiting time” / “Number of waited loader requests”.

This is an indication of the response time impact which may be suffered by a task
due to contention for loader domain resources.

Note: This calculation is not performed on requests that are currently waiting.

For more information, see the CICS statistics tables on page .

Interpreting temporary storage statistics

If a data item is written to temporary storage (using WRITEQ TS), a temporary
storage queue is built.

44 CICS TS for z/OS: CICS Performance Guide

The “Writes more than control interval” is the number of writes of records whose
length was greater than the control interval (Cl) size of the TS data set. This value
should be used to adjust the ClI size. If the reported value is large, increase the CI
size. If the value is zero, consider reducing the ClI size until a small value is
reported.

The number of “times aux. storage exhausted” is the number of situations where
one or more transactions may have been suspended because of a NOSPACE
condition, or (using a HANDLE CONDITION NOSPACE command, the use of
RESP on the WRITEQ TS command, or WRITEQ TS NOSUSPEND command)
may have been forced to abend. If this item appears in the statistics, increase the
size of the temporary storage data set. “Buffer writes” is the number of WRITEs to
the temporary storage data set. This includes both WRITEs necessitated by
recovery requirements and WRITEs forced by the buffer being needed to
accommodate another CI. I/O activity caused by the latter reason can be minimized
by increasing buffer allocation using the system initialization parameter, TS=(b,s),
where b is the number of buffers and s is the number of strings.

The “Peak number of strings in use” item is the peak number of concurrent 1/0
operations to the data set. If this is significantly less than the number of strings
specified in the TS system initialization parameter, consider reducing the system
initialization parameter to approach this number.

If the “Times string wait occurred” is not zero, consider increasing the number of
strings. For details about adjusting the size of the TS data set and the number of
strings and buffers, see [the CICS System Definition Guidd.

For more information, see the CICS statistics tables on pages and

Interpreting transient data statistics

You should monitor the data provided by CICS on the amount of I/O activity for
transient data, in the form of the number of READs and WRITEs to the transient
data intrapartition data set. If there is a large amount of READ activity, this indicates
that the buffer allocation may be insufficient, even though the “peak concurrent
string access” may be fewer than the number allocated.

You should aim to minimize the “Intrapartition buffer waits” and “string waits” by
increasing the number of buffers and the number of strings if you can afford any
associated increase in your use of real storage.

For more information, see the CICS statistics tables on page [614}

Interpreting VTAM statistics

The “peak RPLs posted” includes only the receive-any RPLs defined by the
RAPOOL system initialization parameter. In non-HPO systems, the value shown can
be larger than the value specified for RAPOOL, because CICS reissues each
receive-any request as soon as the input message associated with the posted RPL
has been disposed of. VTAM may well cause this reissued receive-any RPL to be
posted during the current dispatch of terminal control. While this does not
necessarily indicate a performance problem, a number much higher than the
number of receive-any requests specified via RAPOOL may indicate, for MVS, that
VTAM was required to queue incoming messages in subpool 229 when no

Chapter 5. Using CICS statistics 45

receive-any was available to accept the input. You should limit this VTAM queueing
activity by providing a sufficient number of receive-any requests to handle all but
the input message rate peaks.

In addition to indicating whether the value for the RAPOOL system initialization
parameter is large enough, you can also use the “maximum number of RPLs
posted” statistic (AOBRPLX) to determine other information. This depends upon
whether your MVS system has HPO or not.

For HPO, RAPOOL(A,B) allows the user to tune the active count (B). The size of
the pool (A) should be dependent on the speed at which they get processed. The
active count (B) has to be able to satisfy VTAM at any given time, and is dependent
on the inbound message rate for receive-any requests.

Here is an example to illustrate the differences for an HPO and a non-HPO system.
Suppose two similar CICS executions use a RAPOOL value of 2 for both runs. The
number of RPLs posted in the MVS/HPO run is 2, while the MVS/non-HPO run is
31. This difference is better understood when we look at the next item in the
statistics.

This item is not printed if the maximum number of RPLs posted is zero. In our
example, let us say that the MVS/HPO system reached the maximum 495 times.
The non-HPO MVS system reached the maximum of 31 only once. You might
deduce from this that the pool is probably too small (RAPOOL=2) for the HPO
system and it needs to be increased. An appreciable increase in the RAPOOL
value, from 2 to, say, 6 or more, should be tried. As you can see from the example
given below, the RAPOOL value was increased to 8 and the maximum was reached
only 16 times:

MAXIMUM NUMBER OF RPLS POSTED 8
NUMBER OF TIMES REACHED MAXIMUM 16

In a non-HPO system, these two statistics are less useful, except that, if the
maximum number of RPLs posted is less than RAPOOL, RAPOOL can be reduced,
thereby saving virtual storage.

VTAM SOS simply means that a CICS request for service from VTAM was rejected
with a VTAM sense code indicating that VTAM was unable to acquire the storage
required to service the request. VTAM does not give any further information to
CICS, such as what storage it was unable to acquire.

This situation most commonly arises at network startup or shutdown when CICS is
trying to schedule requests concurrently, to a larger number of terminals than during
normal execution. If the count is not very high, it is probably not worth tracking
down. In any case, CICS automatically retries the failing requests later on.

If your network is growing, however, you should monitor this statistic and, if the
count is starting to increase, you should take action. Use D NET,BFRUSE to check
if VTAM is short on storage in its own region and increase VTAM allocations
accordingly if this is required.

The maximum value for this statistic is 99, at which time a message is sent to the

console and the counter is reset to zero. However, VTAM controls its own buffers
and gives you a facility to monitor buffer usage.

46 CICS TS for z/OS: CICS Performance Guide

If you feel that D NET,BFRUSE is insulfficient, you can activate SMS tracing in
VTAM to sample buffer activity at regular intervals. If you have installed NetView,
you can also have dynamic displays of the data that is obtained with D NET,
BFRUSE.

For more information, see the CICS statistics tables on page .

Interpreting dump statistics

Both transaction and system dumps are very expensive and should be thoroughly
investigated and eliminated.

For more information, see the CICS statistics tables on page .

Interpreting transaction statistics

Use these statistics to find out which transactions (if any) had storage violations.
It is also possible to use these statistics for capacity planning purposes. But
remember, many systems experience both increasing cost per transaction as well
as increasing transaction rate.

For more information, see the CICS statistics tables on page [605]

Interpreting program statistics

“Average fetch time” is an indication of how long it actually takes MVS to perform a
load from the partitioned data set in the RPL concatenation into CICS managed
storage.

The average for each RPL offset of “Program size” / “Average fetch time”. is an
indication of the byte transfer rate during loads from a particular partitioned data
set. A comparison of these values may assist you to detect bad channel loading or
file layout problems.

For more information, see the CICS statistics tables on page [548|

Interpreting file statistics

File statistics collect data about the number of application requests against your
data sets. They indicate the number of requests for each type of service that are
processed against each file. If the number of requests is totalled daily or for every
CICS execution, the activity for each file can be monitored for any changes that
occur. Note that these file statistics may have been reset during the day; to obtain a
figure of total activity against a particular file during the day, refer to the DFHSTUP
summary report. Other data pertaining to file statistics and special processing
conditions are also collected.

The wait-on-string number is only significant for files related to VSAM data sets. For
VSAM, STRNO=5 in the file definition means, for example, that CICS permits five
concurrent requests to this file. If a transaction issues a sixth request for the same
file, this request must wait until one of the other five requests has completed
(“wait-on-string”).

The number of strings associated with a file when specified through resource
definition online.

Chapter 5. Using CICS statistics 47

String number setting is important for performance. Too low a value causes
excessive waiting for strings by tasks and long response times. Too high a value
increases VSAM virtual storage requirements and therefore real storage usage.
However, as both virtual storage and real storage are above the 16MB line, this
may not be a problem. In general, the number of strings should be chosen to give
near zero “wait on string” count.

Note: Increasing the number of strings can increase the risk of deadlocks because
of greater transaction concurrency. To minimize the risk you should ensure
that applications follow the standards set in|the CiICS App/icatiod
[Programming Guide,

A file can also “wait-on-string” for an LSRpool string. This type of wait is reflected in
the local shared resource pool statistics section (see |“Interpreting LSRpoo'
statistics’) and not in the file wait-on-string statistics.

If you are using data tables, an extra line appears in the DFHSTUP report for those
files defined as data tables. “Read requests”, “Source reads”, and “Storage alloc(K)”
are usually the numbers of most significance. For a CICS-maintained table a
comparison of the difference between “read requests” and “source reads” with the
total request activity reported in the preceding line shows how the request traffic
divides between using the table and using VSAM and thus indicates the
effectiveness of converting the file to a CMT. “Storage alloc(K)” is the total storage
allocated for the table and provides guidance to the cost of the table in storage
resource, bearing in mind the possibility of reducing LSRpool sizes in the light of
reduced VSAM accesses.

For more information, see the CICS statistics tables on page .

Interpreting LSRpool statistics

CICS supports the use of up to eight LSRpools. CICS produces two sets of
statistics for LSRpool activity: one set detailing the activity for each LSRpool, and
one set giving details for each file associated with an LSRpool. Statistics are printed
for all pools that have been built (a pool is built when at least one file using the pool
has been opened).

You should usually aim to have no requests that waited for a string. If you do then
the use of MXT may be more effective.

When the last open file in an LSRpool is closed, the pool is deleted. The
subsequent unsolicited statistics (USS) LSRpool record written to SMF can be
mapped by the DFHA08DS DSECT.

The fields relating to the size and characteristics of the pool (maximum key length,
number of strings, number and size of buffers) may be those which you have
specified for the pool, through resource definition online command DEFINE
LSRPOOL. Alternatively, if some, or all, of the fields were not specified, the values
of the unspecified fields are those calculated by CICS when the pool is built.

It is possible to change the LSRpool specification of a file when it is closed, but you
must then consider the characteristics of the pool that the file is to share if the pool
is already built, or the file open may fail. If the pool is not built and the pool

characteristics are specified by you, take care that these are adequate for the file. If

48 CICS TS for z/OS: CICS Performance Guide

the pool is not built and CICS calculates all or some of the operands, it may build
the pool creations of that pool. The statistics show all creations of the pool, so any
changed characteristics are visible.

You should consider specifying separate data and index buffers if you have not
already done so. This is especially true if index CI sizes are the same as data ClI
sizes.

You should also consider using Hiperspace™ buffers while retaining a reasonable
number of address space buffers. Hiperspace buffers tend to give CPU savings of
keeping data in memory, exploiting the relatively cheap expanded storage, while
allowing central storage to be used more effectively.

For more information, see the CICS statistics tables on page .

Interpreting journalname and log stream statistics

CICS collects statistics on the data written to each journal and log stream which
can be used to analyze the activity of a single region. However, because log
streams can be shared across multiple MVS images, it can be more useful to
examine the statistics generated by MVS.

Journalname statistics contain data about the use of each journal, as follows:
* The journal type (MVS logger, SMF or dummy)

* The log stream name for MVS logger journal types only

* The number of API journal writes

* The number of bytes written

* The number of flushes of journal data to log streams or SMF.

Note that the CICS system journalname and log stream statistics for the last three
items on this list are always zero. These entries appear in journalname statistics to
inform you of the journal type and log stream name for the special CICS system
journals.

For more information on journalname statistics, see the CICS statistics tables on
page

Log stream statistics contain data about the use of each log stream including the
following:

* The number of write requests to the log stream

* The number of bytes written to the log stream

* The number of log stream buffer waits

* The number of log stream browse and delete requests.

For more information on log stream statistics, see the CICS statistics tables on
page

Journalnames are a convenient means of identifying a destination log stream that is
to be written to. CICS applications write data to journals using their journalname.
CICS itself usually uses the underlying log stream name when issuing requests to
the CICS log manager, and this must be considered when interpreting journalname
and log stream resource statistics. For example, these may show many operations
against a log stream, but relatively few, if any, writes to a journalname which maps
to that log stream. This indicates that it is CICS that accesses the resource at the

Chapter 5. Using CICS statistics 49

log stream level, not an application writing to it through the CICS application
programming interface. These results can typically be seen when examining the
journalname resource statistics for DFHLOG and DFHSHUNT, and comparing them
with the resource statistics for their associated CICS system log streams.

For more information on logging and journaling, see |Chapter 22, “Logging and
ournaling: performance considerations,” on page 339

For information about the SMF Type 88 records produced by the MVS system
logger, see the|z/0S MVS System Management Facilities (SMF) manual.

Interpreting CICS DB2 statistics

In addition to the limited statistics output by the DSNC DISP STAT command and
those output to the STATSQUEUE destination of the DB2CONN during attachment
facility shutdown, a more comprehensive set of CICS DB2 statistics can be
collected using standard CICS statistics interfaces:

* The EXEC CICS COLLECT statistics command accepts the DB2CONN keyword
to allow CICS DB2 global statistics to be collected. CICS DB2 global statistics
are mapped by the DFHD2GDS DSECT.

* The EXEC CICS COLLECT statistics command accepts the DB2ENTRY()
keyword to allow CICS DB2 resource statistics to be collected for a particular
DB2ENTRY. CICS DB2 resource statistics are mapped by the DFHD2RDS
DSECT.

* The EXEC CICS PERFORM STATISTICS command accepts the DB2 keyword to

allow the user to request that CICS DB2 global and resource statistics are written
out to SMF.

The CICS DB2 global and resource statistics are described in the CICS statistics
tables on page |%0| For more information about CICS and DB2, see[the CICS DBZ
|Guidd. |Chapter 21, “Database management for performance,” on page 329|deals
with CICS DB2 performance.

Interpreting JVM statistics

CICS collects the following statistics that relate to JVMs and Java programs:

* JVM pool statistics, which tell you about the activity in the JVM pool for a CICS
region, and about the shared class cache.

« JVM profile statistics, which tell you about the use of JVM profiles in a CICS
region.
* JVM program statistics, which tell you about Java programs that run in a JVM.

Chapter 20, “Java applications using a Java virtual machine (JVM): improving
erformance,” on page 301|has information about tuning your JVMs.

JVM pool statistics

50

The JVM pool statistics show how many requests CICS received in a given interval
to run Java programs in a JVM. The statistics show how many of the requests were
for worker JVMs that use the shared class cache.

CICS attempts to run a Java program in a currently unoccupied JVM that has
previously run a Java program with the same JVM profile as the new request. If
such a JVM is not found, then a mismatch is counted in the statistics field Number
of JVM program requests - JVM mismatched. (Note that this particular statistics

CICS TS for z/OS: CICS Performance Guide

field includes both steals and mismatches.) So you can expect that the first request
made for any given JVM profile will produce a mismatch, because no suitable JVM
will be available. If the number of mismatches given in the statistics is the same as
the number of JVM initializations (in the statistics field Number of JVM program
requests - JVM initialised), then you do not need to be concerned about them. If the
number of mismatches is significantly higher, you should examine the more detailed
statistics that are available for mismatches and steals, and consider whether you
need to take steps to reduce this number. ['Dealing with excessive mismatches and|
lsteals” on page 325|has more information about this.

For more information on JVM pool statistics, see the CICS statistics tables on page

JVM profile statistics

JVM profile statistics are collected for each JVM profile in each execution key
(CICS key and user key), because the same profile can be used to create JVMs in
either execution key.

When applications make a request to run a Java program in a JVM with a particular
profile, CICS might take any one of the following actions:

* A new JVM with that profile might be created for the request.
* The request might reuse a free JVM with the correct profile.

» Afree JVM that has the wrong profile or execution key might be destroyed and
re-initialized to fulfil the request.

lava Applications in CICS|has more information about the circumstances in which
CICS takes each of these actions.

The JVM profile statistics show, among other things, how often each of these
actions were taken for each JVM profile. You cannot directly control the number of
JVMs with each profile that CICS keeps in the JVM pool. However, you can control
the number of different JVM profiles that are used in your system. For example, if
you find that several JVM profiles are used infrequently and so are often the victims
of stealing, it might be possible to consolidate them into a single JVM profile, so
long as their attributes do not conflict with each other. This action increases the
chance that JVMs with that profile will be reused by a matching request, rather than
being destroyed and re-initialized to fulfil a mismatching request.
fexcessive mismatches and steals” on page 325 has more information about this.

The JVM profile statistics can also be used to help you tune the storage heap
settings for your JVMs. They include information on the high water mark for storage
used in the nonsystem heap by JVMs with that profile, and on the high water mark
for Language Environment enclave heap storage used by JVMs with that profile.
Chapter 20, “Java applications using a Java virtual machine (JVM): improving

erformance,” on page 301|tells you how to use these statistics in tuning your
JVMs. Note that the LEHEAPSTATS=YES option must be set in the JVM profile to
collect Language Environment enclave statistics. If you want to use these statistics
for JVM tuning, you should purge your JVMs using the CEMT SET JVMPOOL
PHASEOUT command (or the equivalent EXEC CICS command), around the time
of a statistics reset (either before or immediately afterwards). This ensures that the
statistics collected in the next statistics interval are a more accurate reflection of the
storage usage for your JVMs.

For more information on JVM profile statistics, see the CICS statistics tables on
page

Chapter 5. Using CICS statistics 51

JVM program statistics

Statistics for programs that run in a JVM are collected separately from statistics for
other programs, because the JVM programs are not loaded by CICS. CICS does
not collect statistics for JVM programs when an EXEC CICS COLLECT
STATISTICS PROGRAM or CEMT PERFORM STATISTICS PROGRAM command
is issued. To see them, you need to use the EXEC CICS COLLECT STATISTICS
JVMPROGRAM or CEMT PERFORM STATISTICS JVMPROGRAM command
instead.

However, when you browse program names using the EXEC CICS INQUIRE
PROGRAM command, JVM programs are found. An application that collects
statistics for programs by browsing with the EXEC CICS INQUIRE PROGRAM
command, and then issuing the EXEC CICS COLLECT STATISTICS PROGRAM
command for the program names that it finds, would receive a “not found” response
when it attempted to collect statistics for any JVM programs.

To avoid receiving this response, make the application check the RUNTIME value
for each program name that it finds. If the RUNTIME value is JVM, the application
should not issue the EXEC CICS COLLECT STATISTICS PROGRAM command for
that program name. If you want to see the statistics for programs with a RUNTIME
value of JVM, you can make the application issue the EXEC CICS COLLECT
STATISTICS JVMPROGRAM command for those programs. Note that the statistics
information that is collected for JVM programs is not the same as that collected for
other programs.

Java programs that run in a JVM have their own DFHOSTAT report, the JVM
Programs report. The DFHOSTAT report for Program Totals also includes a figure
for the number of Java programs, but this figure is obtained using the
JVMPROGRAM keyword.

For more information on JVM program statistics, see the CICS statistics tables on
page

Interpreting CorbaServer, DUAR and enterprise bean statistics

For information on CorbaServer statistics, see the CICS statistics tables on page

430

For information on enterprise bean statistics, see the CICS statistics tables on page

Interpreting requestmodel statistics

For information on requestmodel statistics, see the CICS statistics tables on page

Interpreting terminal statistics

There are a number of ways in which terminal statistics are important for
performance analysis. From them, you can get the number of inputs and outputs,
that is, the loading of the system by end users. Line-transmission faults and
transaction faults are shown (these both have a negative influence on performance
behavior).

For more information, see the CICS statistics tables on page @

52 CICS TS for z/OS: CICS Performance Guide

Interpreting ISC/IRC system and mode entry statistics

You can use the ISC/IRC system and mode entry statistics to detect some problems
in a CICS intersystem environment.

The following section attempts to identify the kind of questions you may have in
connection with system performance, and describes how answers to those
questions can be derived from the statistics report. It also describes what actions, if
any, you can take to resolve ISC/IRC performance problems.

Some of the questions you may be seeking an answer to when looking at these
statistics are these:

* Are there enough sessions defined?
* |s the balance of contention winners to contention losers correct?
* |s there conflicting usage of APPC modegroups?

* What can be done if there are unusually high numbers, compared with normal or
expected numbers, in the statistics report?

Summary connection type for statistics fields
The following two tables show the connection type that is relevant for each statistics

field:

Table 2. ISC/IRC system entries

System entry Field IRC LU6.1 APPC
Connection name A14CNTN X X X
AIDS in chain A14EALL X X X
Generic AIDS in chain A14ESALL X X X
ATls satisfied by contention losers A14ESH X

ATls satisfied by contention winners | A14ES2 X X

Peak contention losers A14E1HWM X X

Peak contention winners A14E2HWM X X

Peak outstanding allocates A14ESTAM X X X
Total number of allocates A14ESTAS X X X
Queued allocates A14ESTAQ X X X
Failed link allocates A14ESTAF X X X
Failed allocates due to sessions in A14ESTAO X X X
use

Total bids sent A14ESBID X

Current bids in progress A14EBID X

Peak bids in progress A14EBHWM X

File control function shipping requests | A14ESTFC X X X
Interval control function shipping A14ESTIC X X X
requests

TD function shipping requests A14ESTTD X X X
TS function shipping requests A14ESTTS X X X
DLI function shipping requests A14ESTDL X X X
Terminal sharing requests A14ESTTC X X

Chapter 5. Using CICS statistics 53

All the fields below are specific to the mode group of the mode name given.

Table 3. ISC/IRC mode entries

Mode entry Field IRC LU6.1 APPC
Mode name A20MODE X
ATls satisfied by contention losers A20ES1

ATls satisfied by contention winners | A20ES2 X
Peak contention losers A20E1HWM X
Peak contention winners A20E2HWM X
Peak outstanding allocates A20ESTAM X
Total specific allocate requests A20ESTAS X
Total specific allocates satisfied A20ESTAP X
Total generic allocates satisfied A20ESTAG X
Queued allocates A20ESTAQ X
Failed link allocates A20ESTAF X
Failed allocates due to sessions in A20ESTAO X
use

Total bids sent A20ESBID X
Current bids in progress A20EBID

Peak bids in progress A20EBHWM X

For more information about the usage of individual fields, see the CICS statistics
described under [ISC/IRC system and mode entry statistics” on page 483

General guidance for interpreting ISC/IRC statistics
Here is some guidance information on interpreting the ISC/IRC statistics:
1. Usage of A14xxx and A20xxx fields:

* In most cases, the guidance given in the following section relates to all
connection types, that is, IRC, LU6.1, and APPC. Where the guidance is
different for a particular connection type, the text indicates the relevant type
of connection.

* The statistics fields that relate to IRC and LU6.1 are always prefixed A14,
whereas the APPC fields can be prefixed by A14 or A20. For more
information on which field relates to which connection type, see
[page 53 and [Table 3|

2. Use of the terms “Contention Winner’ and “Contention Loser”:

* APPC sessions are referred to as either contention winners or contention
losers. These are equivalent to secondaries (SEND sessions) and primaries
(RECEIVE sessions) when referring to LU6.1 and IRC.

3. Tuning the number of sessions defined:

* In the following sections, it is sometimes stated that, if certain counts are too
high, you should consider making more sessions available. In these cases,
be aware that, as the number of sessions defined in the system is increased,
it may have the following effects:

Increased use of real and virtual storage.

Increased use of storage on GATEWAY NCPs in the network.

Increased use of storage by VTAM.

Increased line loading in the network.

54 cICS TS for z/OS: CICS Performance Guide

— The back-end CICS system (AOR) may not be able to cope with the
increased workload from the TOR.

— Possible performance degradation due to increased control block scanning
by CICS.

* The recommendation is to set the number of sessions available to the highest
value you think you may need and then, through monitoring the statistics
(both ISC/IRC and terminal statistics) over a number of CICS runs, reduce
the number of sessions available to just above the number required to avoid
problems.

4. Tuning the number of contention winner and contention loser sessions available:

* Look at both sides of the connection when carrying out any tuning, because
changing the loading on one side could inversely affect the other. Any change
made to the number of contention winner sessions available in the TOR has
an effect on the number of contention loser sessions in the AOR.

5. Establish a connection profile for comparison and measurement.

One of the objectives of a tuning exercise should be to establish a profile of the
usage of CICS connections during both normal and peak periods. Such usage
profiles can then be used as a reference point when analyzing statistics to help
you:

» Determine changed usage patterns over a period of time
* Anticipate potential performance problems before they become critical.

Are enough sessions defined?

To help you determine whether you have enough sessions defined, you can check
a number of peak fields that CICS provides in the statistics report. These are:

1.

“Peak outstanding allocates” (fields A14AESTAM and A20ESTAM) “Total number
of allocates” (field A14AESTAS) “Total specific allocate requests” (field
A20ESTAS).

When reviewing the number of sessions for APPC modegroups, and the number
of “Peak outstanding allocates” appears high in relation to the “Total number of
allocates”, or the “Total specific allocate requests” within a statistics reporting
period, it could indicate that the total number of sessions defined is too low.

“Peak contention winners” (fields A14E2HWM and A20E2HWM) “Peak
contention losers” (fields A14AE1THWM and A20E1HWM)

If the number of (“Peak contention winners” + “Peak contention losers”) equals
the maximum number of sessions available (as defined in the SESSIONS
definition), this indicates that, at some point in the statistics reporting period, all
the sessions available were, potentially, in use. While these facts alone may not
indicate a problem, if CICS also queued or rejected some allocate requests
during the same period, the total number of sessions defined is too low.

“Failed allocates due to sessions in use” (fields A14AESTAO and A20ESTAO)

This value is incremented for allocates that are rejected with a SYSBUSY
response because no sessions are immediately available (that is, for allocate
requests with the NOSUSPEND or NOQUEUE option specified). This value is
also incremented for allocates that are queued and then rejected with an AAL1
abend code; the AAL1 code indicates the allocate is rejected because no
session became available within the specified deadlock timeout (DTIMOUT)
time limit.

If the number of “Failed allocates due to sessions in use” is high within a
statistics reporting period, it indicates that not enough sessions were
immediately available, or available within a reasonable time limit.

Chapter 5. Using CICS statistics 595

Action: Consider making more sessions available with which to satisfy the allocate
requests. Enabling CICS to satisfy allocate requests without the need for queueing
may lead to improved performance.

However, be aware that increasing the number of sessions available on the front
end potentially increases the workload to the back end, and you should investigate
whether this is likely to cause a problem.

Is the balance of contention winners to contention losers correct?

There are several ways to determine the answer to this, because CICS provides a
number of fields which show contention winner and contention loser usage.

The following fields should give some guidance as to whether you need to increase
the number of contention winner sessions defined:

1. “Current bids in progress” (fields A14EBID and A20EBID) “Peak bids in
progress” (fields A14AEBHWM and A20EBHWM)

The value “Peak bids in progress” records the maximum number of bids in
progress at any one time during the statistics reporting period. “Current bids in
progress” is always less than or equal to the “Peak bids in progress”.

Ideally, these fields should be kept to zero. If either of these fields is high, it
indicates that CICS is having to perform a large number of bids for contention
loser sessions.

2. “Peak contention losers” (fields A14ETHWM and A20E1HWM).

If the number of “Peak contention losers” is equal to the number of contention
loser sessions available, the number of contention loser sessions defined may
be too low. Alternatively, for APPC/LU6.1, CICS could be using the contention
loser sessions to satisfy allocates due to a lack of contention winner sessions.
This should be tuned at the front-end in conjunction with winners at the
back-end. For details of how to specify the maximum number of sessions, and
the number of contention winners, see the information on defining SESSIONS in
[the CICS Resource Definition Guide,

Actions:

For APPC, consider making more contention winner sessions available, which
should reduce the need to use contention loser sessions to satisfy allocate requests
and, as a result, should also make more contention loser sessions available.

For LUB.1, consider making more SEND sessions available, which decreases the
need for LUB.1 to use primaries (RECEIVE sessions) to satisfy allocate requests.

For IRC, there is no bidding involved, as MRO can never use RECEIVE sessions to
satisfy allocate requests. If “Peak contention losers (RECEIVE)” is equal to the
number of contention loser (RECEIVE) sessions on an IRC link, the number of
allocates from the remote system is possibly higher than the receiving system can
cope with. In this situation, consider increasing the number of RECEIVE sessions
available.

Note: The usage of sessions depends on the direction of flow of work. Any tuning
which increases the number of winners available at the front-end should also
take into account whether this is appropriate for the direction of flow of work
over a whole period, such as a day, week, or month.

56 CICS TS for z/0S: CICS Performance Guide

Is there conflicting usage of APPC modegroups?

There is a possibility of conflicting APPC modegroup usage, where a mixture of
generic and specific allocate requests is used within a CICS region.

A specific allocate is an allocate request that specifies a particular (specific) mode
group of sessions to allocate from, whereas a generic allocate does not specify any
particular mode group only the system to which an allocate is required. In the latter
case CICS determines the session and mode group to allocate.

The fields you need to investigate to answer this question, are:
“Total generic allocates satisfied” (field A20ESTAG)
“Total specific allocate requests” (field A20ESTAS)
“Peak outstanding allocates” (field A20ESTAM)
“Total specific allocates satisfied” (field A20ESTAP).

If the “Total generic allocates satisfied” is much greater than “Total specific allocate
requests”, and “Peak outstanding allocates” is not zero, it could indicate that generic
allocates are being made only, or mainly, to the first modegroup for a connection.

This could cause a problem for any specific allocate, because CICS initially tries to
satisfy a generic allocate from the first modegroup before trying other modegroups
in sequence.

Action: Consider changing the order of the installed modegroup entries.
Modegroups for a connection are represented by TCT mode entries (TCTMES), with
the modegroup name being taken from the MODENAME specified on the
SESSIONS definition. The order of the TCTMEs is determined by the order in which
CICS installs the SESSIONS definitions, which is in the order of the SESSIONS
name as stored on the CSD (ascending alphanumeric key sequence). To change
the order of the TCTMEs, you must change the names of the SESSIONS
definitions. You can use the CEDA RENAME command with the AS option to
rename the definition with a different SESSIONS name within the CSD group. By
managing the order in which the TCTMEs are created you can ensure that specific
allocates reference modegroups lower down the TCTME chain, and avoid conflict
with the generic ALLOCATEs. Alternatively, make all allocates specific allocates.

[Figure 3 on page 58|illustrates how the order of the TCTMEs is determined.

Chapter 5. Using CICS statistics 57

ISCGROUP in CSD Group installed
in CICS region ‘
CONNECTION(CICA) P | TCTSE created
: v
Special TCTME
. for SNASVCM
SESSIONS(SESSIONA)
CONN(CICA)
: ‘ First user TCTME
MODENAME(MODEGRPY) |- - - - -« « - « « . .p created for
: | MODEGRPY
SESSIONS(SESSIONB)
CONN(CICA)
. Pointer to
: next modegroup
MODENAME(MODEGRPX) |- - - - -
—L ‘ Second user
S TCTME created

\ for MODEGRPX

Figure 3. How the sequence of TCT mode entries is determined

What if there are unusually high numbers in the statistics report?

When looking down the ISC/IRC system and mode entries statistics report, you may
notice a number of fields that appear to be unusually high in relation to all others.
This section lists some of those fields, and what action you can take to reduce their
numbers:

1. “Peak contention losers” (fields AT4AE1THWM and A20E1HWM).

If the number of “Peak contention losers” is equal to the number of contention
loser sessions available, the number of contention loser sessions defined may
be too low, or, if your links are APPC/LU6.1, CICS could be using the contention
loser sessions to satisfy allocates due to a lack of contention winner sessions.

Action: Consider making more contention winner sessions available with which
to satisfy the allocate requests. If IRC, increase the RECEIVES.

2. “Peak outstanding allocates” (fields A14AESTAM and A20ESTAM)

If the number of “Peak outstanding allocates” appears high, in relation to the
“Total number of allocates”, or the “Total specific allocate requests” for APPC
modegroups within a statistics reporting period, it could indicate that the total
number of sessions defined is too low, or that the remote system cannot cope
with the amount of work being sent to it.

Action: Consider making more sessions available with which to satisfy the
allocate requests, or reduce the number of allocates being made.

3. ‘“Failed link allocates” (fields A14AESTAF and A20ESTAF)

If this value is high within a statistics reporting period, it indicates something
was wrong with the state of the connection. The most likely cause is that the
connection is released, out of service, or has a closed mode group.

Action: Examine the state of the connection that CICS is trying to allocate a
session on, and resolve any problem that is causing the allocates to fail.

58 CICS TS for z/0S: CICS Performance Guide

To help you to resolve a connection failure, check the CSMT log for the same
period covered by the statistics for any indication of problems with the
connection that the statistics relate to.

It may also be worth considering writing a connection status monitoring
program, which can run in the background and regularly check connection
status and take remedial action to re-acquire a released connection. This may
help to minimize outage time caused by connections being unavailable for use.
Seelthe CICS System Programming Reference manual for programming
information about the EXEC CICS INQUIREISET CONNECTION and the EXEC
CICS INQUIREISET MODENAME commands that you would use in such a
program.

4. “Failed allocates due to sessions in use” (fields A14ESTAO and A20ESTAQ)

This value is incremented for allocates that have been rejected with a
SYSBUSY response because no sessions were immediately available, and the
allocate requests were made with the NOSUSPEND or NOQUEUE option
specified. This value is also incremented for allocates that have been queued
and then rejected with an AAL1 abend code; the AAL1 code indicates the
allocate was rejected because no session was available within the specified
deadlock timeout (DTIMOUT) time limit.

If the number of “Failed allocates due to sessions in use” is high, within a
statistics reporting period, it indicates that not enough sessions were
immediately available, or available within a reasonable time limit.

Action: The action is to consider making more contention winner sessions
available. This action would result in a reduction in the amount of bidding being
carried out, and the subsequent usage of contention loser sessions. Increase
the sessions if IRC is used.

5. “Peak bids in progress” (fields A14EBHWM and A20EBHWM)

Ideally, these fields should be kept to zero. If either of these fields are high, it
indicates that CICS is having to perform a large amount of bidding for sessions.

Action: Consider making more contention winner sessions available, to satisfy
allocate requests.

Interpreting ISC/IRC attach time entry statistics

ISC/IRC Signon activity. If the number of “entries reused” in signon activity is low,
and the “entries timed out” value for signon activity is high, the value of the
USRDELAY system initialization parameter should be increased. The “average
reuse time between entries” gives some indication of the time that could be used for
the USRDELAY system initialization parameter.

ISC Persistent verification (PV) activity. If the number of “entries reused” in the PV
activity is low, and the “entries timed out” value is high, the PVDELAY system
initialization parameter should be increased. The “average reuse time between
entries” gives some indication of the time that could be used for the PVDELAY
system initialization parameter.

Note: If there are a lot of either signed-on or PV-entries timed out, and not many
reused, your performance may be degraded because of the need to make
calls to an external security manager, such as RACF for security checking.

For more information, see the CICS statistics tables on page @

Chapter 5. Using CICS statistics 59

Interpreting front end programming interface (FEPI) statistics

CICS monitoring and statistics data can be used to help tune FEPI applications,
and to control the resources that they use. FEPI statistics contain data about the
use of each FEPI pool, a particular target in a pool, and each FEPI connection. The
performance aspects of the FEPI are not discussed here — for information on
these, see the CICS Front End Programming Interface User's Guidel

For listings of FEPI statistics, see the CICS statistics tables on page

Interpreting user domain statistics

The user domain attempts to minimize the number of times it calls the security
domain to create user security blocks (such as the ACEE), because this operation
is very expensive in both processor time and input/output operations. If possible,
each unique representation of a user is shared between multiple transactions. A
user-domain representation of a user can be shared if the following attributes are
identical:

* The userid.
* The groupid.

* The applid. This is not necessarily the same for all the users in a region. The
applid is shipped with the userid across MRO links.

* The port of entry. This can be the netname for users signed on at VTAM
terminals, or the console name for users signed on at consoles. It is null for other
terminal types and for users associated with non-terminal transactions.

The user domain keeps a count of the number of concurrent usages of a shared
instance of a user. The count includes the number of times the instance has been
associated with a CICS resource (such as a transient data queue) and the number
of active transactions that are using the instance.

Whenever CICS adds a new user instance to the user domain, the domain attempts
to locate that instance in its user directory. If the user instance already exists with
the parameters described above, that instance is reused. USGDRRC records how
many times this is done. However, if the user instance does not already exist, it
needs to be added. This requires an invocation of the security domain and the
external security manager. USGDRNFC records how many times this is necessary.

When the count associated with the instance is reduced to zero, the user instance
is not immediately deleted: instead it is placed in a timeout queue controlled by the
USRDELAY system initialization parameter. While it is in the timeout queue, the
user instance is still eligible to be reused. If it is reused, it is removed from the
timeout queue. USGTORC records how many times a user instance is reused while
it was being timed out, and USGTOMRT records the average time that user
instances remain on the timeout queue until they are removed.

However, if a user instance remains on the timeout queue for a full USRDELAY
interval without being reused, it is deleted. USGTOEC records how many times this
happens.

If USGTOEC is large compared to USGTORC, you should consider increasing the

value of USRDELAY. But if USGTOMRT is much smaller than USRDELAY, you may
be able to reduce USRDELAY without significant performance effect.

60 CICS TS for z/OS: CICS Performance Guide

You should be aware that high values of USRDELAY may affect your security
administrator's ability to change the authorities and attributes of CICS users,
because those changes are not reflected in CICS until the user instance is
refreshed in CICS by being flushed from the timeout queue after the USRDELAY
interval. Some security administrators may require you to specify USRDELAY=0.
This still allows some sharing of user instances if the usage count is never reduced
to zero. Generally, however, remote users are flushed out immediately after the
transaction they are executing has terminated, so that their user control blocks have
to be reconstructed frequently. This results in poor performance. For more
information, see[‘User domain statistics” on page 636

| Interpreting Web and TCP/IP statistics

I The following CICS statistics provide information about CICS Web support, Web
I services and TCP/IP:

| TCP/IP statistics

I TCP/IP support is the basis for CICS Web support and Web services in

I CICS. Each port on which TCP/IP requests can be received is defined by a
I TCPIPSERVICE resource definition. The statistics include global statistics

I and statistics for each TCPIPSERVICE definition.
|
|
I
|

« DFHSTUP reports: see [‘'TCP/IP global and TCP/IP Service statistics” on|
« DFHOSTAT reports: see [‘'TCP/IP Report” on page 751|and [‘'TCP/IF|
[Services Report” on page 754

| URIMAP definition statistics

| URIMAP resource definitions match the URIs of HTTP or Web service

| requests, and provide information on how to process the requests. The

I statistics include global statistics and statistics for each URIMAP definition.
|
I
I

« DFHSTUP reports: see [‘'URIMAP definition statistics” on page 628|

« DFHOSTAT reports: see ['URIMAPs Global Report” on page 757|and
[‘URIMAPs Report” on page 759

| Virtual host statistics

| Virtual hosting takes place where a single HTTP server represents multiple
I hosts at the same IP address. The different hosts are identified by a host

I name. CICS automatically creates virtual hosts based on the host names

I that you specify in your URIMAP definitions. A DFHOSTAT report lists each
I virtual host and its status.

|

I

» DFHSTUP reports: not available
« DFHOSTAT reports: see [Virtual Hosts Report” on page 761|

| Web services statistics

I Web services support in CICS enables CICS applications to act in the role
| of both Web service provider and Web service requester, where the

I services are defined using Web Services Description Language (WSDL).

I WEBSERVICE resource definitions are used to define aspects of the run

I time environment for CICS application programs deployed in a Web

I services setting. Statistics are provided for each WEBSERVICE resource

| definition, and a total use count for all WEBSERVICE definitions is also

I available.

I
|

« DFHSTUP reports: see ['Web service statistics” on page 640
- DFHOSTAT reports: see ['Web Services Report” on page 762

Chapter 5. Using CICS statistics 61

PIPELINE definition statistics
PIPELINE resource definitions are used in Web services support when a
CICS application is in the role of a Web service provider or requester. They
provide information about the message handler programs that act on a
service request and on the response. Statistics are provided for each
PIPELINE resource definition, and a total use count for all PIPELINE
definitions is also available.

* DFHSTUP reports: see |“PIPELINE definition statistics” on page 546|
 DFHOSTAT reports: see [‘PIPELINEs Report’ on page 762

Document template statistics
Document templates are used in CICS Web support to produce the body of
HTTP messages. They can be specified in a URIMAP definition to provide a
static response to a Web client's request, or they can be used by an
application program to make an HTTP request or response. A DFHOSTAT
report lists each document template that is defined in the CICS region, and
gives information about its source.

* DFHSTUP reports: not available
» DFHOSTAT reports: see [‘Document Templates Report” on page 764

Interpreting server statistics

The DFHSTUP summary report does not include the statistics obtained for the
shared temporary storage queue server, the coupling facility data tables server, and
the named counter sequence number server.

Shared temporary storage queue server statistics

Shared temporary storage queue server statistics are provided by the AXM page
pool management routines for the pools AXMPGANY and AXMPGLOW. For more
information, see |Appendix B, “Shared temporary storage queue server statistics,” or|

|9age 643.|

Coupling facility data tables server statistics

Coupling facility data tables server statistics are provided by the AXM page pool
management routines for the pools AXMPGANY and AXMPGLOW. For more
information, see|Appendix C, “Coupling facility data tables server statistics,” on page|

Named counter sequence number server statistics

Named counter sequence number server statistics are provided by the AXM page
pool management routines for the pools AXMPGANY and AXMPGLOW. For more
information, see |Appendix D, “Named counter sequence number server,” on page]

62 CICS TS for z/OS: CICS Performance Guide

Chapter 6. The CICS monitoring facility

CICS monitoring collects data about the performance of all user- and CICS-supplied
transactions during online processing for later offline analysis. The records
produced by CICS monitoring are of the MVS System Management Facility (SMF)
type 110, and are written to an SMF data set.

Note: Statistics records and some journaling records are also written to the SMF
data set as type 110 records. You might find it particularly useful to process
the statistics records and the monitoring records together, because statistics
provide resource and system information that is complementary to the
transaction data produced by CICS monitoring. The contents of the statistics
fields are described in|Appendix A, “CICS statistics tables,” on page 413,
The procedure for processing them using the statistics utility program,
DFHSTUP, is infthe CICS Operations and Utilities Guide

Monitoring data is useful both for performance tuning and for charging your users
for the resources they use.

For information on the performance implications of using the CICS monitoring
facility, see |“CICS monitoring facility: performance considerations” on page 399.|

This chapter covers the following topics:

« [‘The classes of monitoring data: Overview’|

+ [‘Event monitoring points” on page 65|

+ [‘The monitoring control table (MCT)” on page 67|
[‘Controlling CICS monitoring” on page 68
[‘Processing CICS monitoring facility output” on page 69|
[‘Interpreting CICS monitoring” on page 69|
[‘Notes on the performance data” on page 71|

+ [‘Performance class data” on page 83|
[‘Exception class data” on page 120
[Transaction resource class data” on page 126

The classes of monitoring data: Overview
CICS monitoring facility enables you to collect the following types, or classes, of
monitoring data:
» Performance class data
* Exception class data
» Transaction resource class data.

Performance class data

Performance class data is detailed transaction-level information, such as the
processor and elapsed time for a transaction, or the time spent waiting for 1/0. At
least one performance record is written for each transaction that is being monitored.

Performance class data provides detailed, resource-level data that can be used for
accounting, performance analysis, and capacity planning. This data contains
information relating to individual task resource usage, and is completed for each
task when the task terminates.

© Copyright IBM Corp. 1983, 2011 63

You can enable performance-class monitoring by coding MNPER=ON (together with
MN=ON) in the system initialization table (SIT). Alternatively you can use either the
(CEMT SET MONITOR ON PERF) or EXEC CICS SET MONITOR STATUS(ON)
PERFCLASS(PERF) commands.

This information could be used periodically to calculate the charges applicable to
different tasks. If you want to set up algorithms for charging users for resources
used by them, you could use this class of data collection to update the charging
information in your organization’s accounting programs. (For older versions of CICS,
we did not recommend charging primarily on exact resource usage, because of the
overheads involved in getting these figures.)

Exception class data

Exception class monitoring data is information on CICS resource shortages that are
suffered by a transaction. This data highlights possible problems in CICS system
operation and is intended to help you identify system constraints that affect the
performance of your transactions. There is one exception record for each type of
exception condition. The exception records are produced and written to SMF as
soon as the resource shortage encountered by the transaction has been resolved.
Exception records are produced for each of the following resource shortages:

* Wait for storage in the CDSA

+ Wait for storage in the UDSA

» Wait for storage in the SDSA

» Wait for storage in the RDSA

* Wait for storage in the ECDSA

* Wait for storage in the EUDSA

* Wait for storage in the ESDSA

» Wait for storage in the ERDSA

» Wait for auxiliary temporary storage

* Wait for auxiliary temporary storage string

» Wait for auxiliary temporary storage buffer

» Wait for coupling facility data tables locking (request) slot
» Wait for coupling facility data tables non-locking (request) slot
* Wait for file buffer

* Wait for LSRPOOL string.

» Wait for file string

If the monitoring performance class is also being recorded, the performance class
record for the transaction includes the total elapsed time the transaction was
delayed by a CICS system resource shortage. This is measured by the exception
class and the number of exceptions encountered by the transaction. The exception
class records can be linked to the performance class records either by the
transaction sequence number or by the network unit-of-work id. For more
information on the exception class records, see f‘Exception class data” on page 120.|

You can enable exception-class monitoring by coding the MNEXC=ON (together
with MN=ON) system initialization parameters. Alternatively, you can use either the
CEMT command. (CEMT SET MONITOR ON EXCEPT) or EXEC CICS SET
MONITOR STATUS(ON) EXCEPTCLASS(EXCEPT).

64 CICS TS for z/OS: CICS Performance Guide

Transaction resource class data

Transaction resource class data provides additional transaction-level information
about individual resources accessed by a transaction. Currently, the transaction
resource class covers file and temporary storage queue resources. The maximum
number of files and temporary storage queues monitored for each transaction is
limited by the FILE and TSQUEUE parameters on the DFHMCT TYPE=INITIAL
macro. The default is FILE=8 for files and TSQUEUE=8 for temporary storage
queues. Therefore, you may need to assemble an MCT that specifies either or both
FILE and TSQUEUE options if the default values are insufficient, or if you do not
want to collect transaction resource data for either files or temporary storage
queues. One transaction resource record is written for each transaction that is being
monitored, provided the transaction accesses at least one of the resources for
which monitoring data is requested, (for example, at least 1 file if you specify
FILE=number).

Performance class data also provides information about file and temporary storage
queue resource accesses, but this information in the performance record is given in
total only for all files (see [‘Performance data in group DFHFILE” on page 90) and
all temporary storage queues (see [‘Performance data in group DFHTEMP” on page]
. Transaction resource data breaks this information down by individual file name
and temporary storage queue name, up to the maximum number specified in the
MCT. Transaction resource information is completed for each task when the task
terminates.

You enable transaction resource class monitoring at startup by coding MNRES=ON
(together with MN=ON) as a system initialization parameter. Alternatively, you can
use one of the following commands to enable performance class monitoring
dynamically:

« CEMT SET MONITOR ON RESRCE

« EXEC CICS SET MONITOR STATUS(ON) RESRCECLASS(RESRCE)

CICS Monitoring Facility (CMF) and the MVS workload manager

If you are running CICS with the MVS workload manager in goal mode, the MVS
workload manager provides transaction activity reporting by service class and/or
report class, based on transaction response time information.

See ['MVS workload manager’ on page 167|for more information about the MVS
workload manager.

Event monitoring points

CICS monitoring data is collected at system-defined event monitoring points (EMPs)
in the CICS code. Although you cannot relocate these monitoring points, you can
choose which classes of monitoring data you want to be collected. Programming
information about CICS monitoring is infthe CICS Customization Guide

If you want to gather more performance class data than is provided at the
system-defined event monitoring points, you can code additional EMPs in your
application programs. At these points, you can add or change up to 16384 bytes of
user data in each performance record. Up to this maximum of 16384 bytes you can
have, for each ENTRYNAME qualifier, any combination of the following:

» Between 0 and 256 counters

» Between 0 and 256 clocks

* A single 8192-byte character string.

Chapter 6. The CICS monitoring facility 65

You could use these additional EMPs to count the number of times a certain event
occurs, or to time the interval between two events. If the performance class was
active when a transaction was started, but was not active when a user EMP was
issued, the operations defined in that user EMP would still execute on that
transaction’s monitoring area. The DELIVER option would result in a loss of data at
this point, because the generated performance record cannot be output while the
performance class is not active. If the performance class was not active when a
transaction was started, the user EMP would have no effect.

User EMPs can use the EXEC CICS MONITOR command. For programming
information about this command, refer to the CICS Application Programming|

Additional EMPs are provided in some IBM program products, such as DBCTL.
From CICS’s point of view, these are like any other user-defined EMP. EMPs in
user applications and in IBM program products are identified by a decimal number.
The numbers 1 through 199 are available for EMPs in user applications, and the
numbers from 200 through 255 are for use in IBM program products. The numbers
can be qualified with an ‘entryname’, so that you can use each number more than
once. For example, PROGA.1, PROGB.1, and PROGC.1, identify three different
EMPs because they have different entrynames.

For each user-defined EMP there must be a corresponding monitoring control table
(MCT) entry, which has the same identification number and entryname as the EMP
that it describes.

You do not have to assign entrynames and numbers to system-defined EMPs, and
you do not have to code MCT entries for them.

Here are some ideas about how you might make use of the CICS and user fields
provided with the CICS monitoring facility:

» |If you want to time how long it takes to do a table lookup routine within an
application, code an EMP with, say, ID=50 just before the table lookup routine
and an EMP with ID=51 just after the routine. The system programmer codes a
TYPE=EMP operand in the MCT for ID=50 to start user clock 1. You also code a
TYPE=EMP operand for ID=51 to stop user clock 1. The application executes.
When EMP 50 is processed, user clock 1 is started. When EMP 51 is processed,
the clock is stopped.

* One user field could be used to accumulate an installation accounting unit. For
example, you might count different amounts for different types of transaction. Or,
in a browsing application, you might count 1 unit for each record scanned and
not selected, and 3 for each record selected.

You can also treat the fullword count fields as 32-bit flag fields to indicate special
situations, for example, out-of-line situations in the applications, operator errors,
and so on. CICS includes facilities to turn individual bits or groups of bits on or
off in these counts.

» The performance clocks can be used for accumulating the time taken for 1/O,
DL/l scheduling, and so on. It usually includes any waiting for the transaction to
regain control after the requested operation has completed. Because the periods
are counted as well as added, you can get the average time waiting for I/O as
well as the total. If you want to highlight an unusually long individual case, set a
flag on in a user count as explained above.

66 CICS TS for z/OS: CICS Performance Guide

» One use of the performance character string is for systems in which one
transaction ID is used for widely differing functions. The application can enter a
subsidiary ID into the string to indicate which particular variant of the transaction
applies in each case.

Some users have a single transaction ID so that all user input is routed through a
common prologue program for security checking, for example. In this case, it is
very easy to record the subtransaction identifier during this prologue. (However, it
is equally possible to route transactions with different identifiers to the same
program, in which case this technique is not necessary.)

Application naming event monitoring points

You can also use application naming event monitoring points. Application naming is
an enabling function that allows your application programs to invoke special CICS
event monitoring points. Data collected at these CICS-generated EMPs can be
used by any CICS monitoring reporting package.

For information about the APPLNAME parameter that you use to enable application
naming support, see [the CICS Resource Definition Guidg,

The monitoring control table (MCT)

You use the monitoring control table (MCT):

» To specify the type of resource for which you want to collect transaction resource
monitoring data (see [DFHMCT TYPE=INITIAL").

» To enable application naming support, which makes available the

CICS-generated DFHAPPL EMPs to your application programs (see ['DFHMC
_YPE:INITIAL’

» To specify whether you want additional monitoring performance data to be
collected for the resource managers used by your transaction (see |'DFHMCT
TYPE=INITIAL").

» To notify CICS about the EMPs that you have coded in your application programs
and about the data that is to be collected at these points

» To notify CICS that you want certain system-defined performance data not to be
recorded during a particular CICS run.

DFHMCT TYPE=INITIAL

You use the TYPE=INITIAL macro indicate whether you want application naming
support, additional performance class monitoring for the resource managers used
by your transaction, and transaction resource monitoring. For information about the
APPLNAME, RMI, FILE, and TSQUEUE parameters that control these facilities, see
lthe CICS Resource Definition Guide,

DFHMCT TYPE=EMP

There must be a DFHMCT TYPE=EMP macro definition for every user-coded EMP.
This macro has an ID operand, whose value must be made up of the ENTRYNAME
and POINT values specified on the EXEC CICS MONITOR command. The
PERFORM operand of the DFHMCT TYPE=EMP macro tells CICS which user
count fields, user clocks, and character values to expect at the identified user EMP,
and what operations to perform on them.

Chapter 6. The CICS monitoring facility 67

DFHMCT TYPE=RECORD

The DFHMCT TYPE=RECORD macro allows you to exclude specific
system-defined performance data from a CICS run. (Each performance monitoring
record is 1848 bytes long, without taking into account any user data that may be
added, or any excluded fields.)

Each field of the performance data that is gathered at the system-defined EMPs
belongs to a group of fields that has a group identifier. Each performance data field
also has its own numeric identifier that is unique within the group identifier. For
example, the transaction sequence number field in a performance record belongs to
the group DFHTASK, and has the numeric identifier ‘031’. Using these identifiers,
you can exclude specific fields or groups of fields, and reduce the size of the
performance records.

Full details of the MCT are provided inthe CICS Resource Definition Guidg, and
examples of MCT coding are included with the programming information in m
[CICS Customization Guide|

Three sample monitoring control tables are also provided in
CICSTS31.CICS.SDFHSAMP:

 For terminal-owning regions (TORs) - DFHMCTT$

 For application-owning regions (AORs) - DFHMCTA$

 For application-owning regions (AORs) with DBCTL - DFHMCTD$
* For file-owning regions (FORs) - DFHMCTFS$.

These samples show how to use the EXCLUDE and INCLUDE operands to reduce
the size of the performance class record in order to reduce the volume of data
written by CICS to SMF.

Controlling CICS monitoring

68

When you are starting CICS, you switch the monitoring facility on by specifying the
system initialization parameter MN=ON. MN=OFF is the default setting. You can
select the classes of monitoring data you want to be collected using the
IMNRES] and [MNEXC] system initialization parameters. You can request the
collection of any combination of performance class data, transaction resource class
data, and exception class data. You can change the class settings whether
monitoring facility is ON or OFF. For details of all the system initialization
parameters that control monitoring activities, see [the CICS System Definition Guide]

When CICS is running, you can control the monitoring facility dynamically. Just as

at CICS initialization, you can switch monitoring on or off, and you can change the

classes of monitoring data that are being collected. There are two ways of doing

this:

1. You can use the master terminal CEMT INQISET MONITOR command, which is
described in [CICS Supplied Transactions}

2. You can use the EXEC CICS INQUIRE MONITOR (see the CICS System|
Programming Referencg) and SET MONITOR (see fthe CICS Systen
Programming Referencd) commands.

If you activate a class of monitoring data in the middle of a run, the data for that
class becomes available only for transactions that are started thereafter. You cannot

CICS TS for z/OS: CICS Performance Guide

change the classes of monitoring data collected for a transaction after it has started.
It is often preferable, particularly for long-running transactions, to start all classes of
monitoring data at CICS initialization.

Processing CICS monitoring facility output

You can process output from the CICS monitoring facility using products such as

CICS Performance Analyzer and Tivoli Decision Support. See |Chapter 8, “Tivoli
Decision Support for z/OS,” on page 157|and [Chapter 7, “CICS Performanc
Analyzer for z/OS (CICS PA)

,” on page 135|for more information.

Or, instead, you may want to write your own application program to process output
from the CICS monitoring facility. The CICS Customization Guide| gives
programming information about the format of this output.

CICS provides a sample program, DFHSMOLS, which reads, formats, and prints
monitoring data. It is intended as a sample program that you can use as a skeleton
if you need to write your own program to analyze the data set. Comments within the
program may help you if you want to do your own processing of CICS monitoring
facility output. See the CICS Operations and Utilities Guide for further information
on the DFHSMOLS program.

Interpreting CICS monitoring

| Product-sensitive programming interface |

All of the exception class data and all of the system-defined performance class data
that can be produced by CICS monitoring is listed below. Each of the data fields is
presented as a field description, followed by an explanation of the contents. The
field description has the format shown in which is taken from the
performance data group DFHTASK.

001 (TYPE-C, 'TRAN', 4 BYTES)

001 - Field identifier by which the field may be
individually excluded or included during MCT
preparation (CMODIDNT of the dictionary entry).

TYPE-C - Data type, which may be one of the following:

A - a 32-bit count, a 64-bit count, a string of 64-bit counts
C - a byte string

P - a packed decimal value

S - a clock comprising a 32-bit accumulation

of 16-microsecond units followed by an
8-bit flag followed by a 24-bit count
(modulo-16 777 216) of the number of
intervals included in the accumulation.
T - a time stamp derived directly from the
output of an STCK instruction.
(CMODTYPE of the dictionary entry)

'"TRAN' - Informal name for the field, as used,
perhaps, in column headings when the monitoring output
is postprocessed (CMODHEAD of the dictionary entry).

4 BYTES - Length of the field (as represented by CMODLENG
in the dictionary entry).

Figure 4. Format of the descriptions of the data fields

Chapter 6. The CICS monitoring facility 69

Note: References in|Figure 4 on page 69|to the associated dictionary entries apply
only to the performance class data descriptions. Exception class data is not
defined in the dictionary record.

This section covers:

* [‘Clocks and time stamps]

* |"Notes on the performance data” on page 71|

» [“Performance class data” on page 83|

* |“Exception class data” on page 120|

« [‘Transaction resource class data” on page 126

| End of Product-sensitive programming interface 4|

Clocks and time stamps

| Product-sensitive programming interface |

In the descriptions that follow, the term clock is distinguished from the term time
Stamp.

A clock is a 32-bit value, expressed in units of 16 microseconds, accumulated
during one or more measurement periods. The 32-bit value is followed by 8
reserved bits, which are in turn followed by a 24-bit value indicating the number of
such periods.

Neither the 32-bit timer component of a clock nor its 24-bit period count are
protected against wraparound. The timer capacity is about 18 hours, and the period
count runs modulo 16 777 216.

The 8 reserved bits have the following significance:

Bits 0, 1,2 and 3
Used for online control of the clock when it is running, and should always
be zeros on output.

Bits 4 and 7
Not used.

Bits 5 and 6
Used to indicate, when set to 1, that the clock has suffered at least one
out-of-phase start (bit 5) or stop (bit 6).

A time stamp is an 8-byte copy of the output of an STCK instruction.
Note: All times produced in the offline reports are in GMT (Greenwich Mean Time)

not local time. Times produced by online reporting can be expressed in
either GMT or local time.

| End of Product-sensitive programming interface 4|

70 CICS TS for z/OS: CICS Performance Guide

Notes on the performance data

This section includes:

“Transaction timing fields’]

“Response time” on page 72|

“Transaction dispatch time and CPU time” on page 73|

“Wait (suspend) times” on page 73]

[‘Program load time” on page 78
“RMI elapsed and suspend time” on page 78|

“JVM elapsed time and suspend time” on page 79|

“Syncpoint elapsed time” on page 79

“Storage occupancy counts” on pagem

“Program storage” on page 81|

Transaction timing fields

Product-sensitive programming interface |

The CMF performance class record provides detailed timing information for each
transaction as it is processed by CICS. A transaction can be represented by one or
more performance class records depending on the monitoring options selected. The
key transaction timing data fields are:

The Transaction Start time and Stop time represent the start and end of a
transaction measurement interval. This is normally the period between
transaction attach and detach but the performance class record could represent a
part of a transaction depending on the monitoring options selected. The
“Transaction Response Time" can be calculated by subtracting the transaction
start time from the stop time.

The Transaction Dispatch time is the time the transaction was dispatched.

The Transaction Dispatch Wait time is the time the transaction was suspended
and waiting for redispatch.

The Transaction CPU time is the portion of Dispatch time when the task is using
processor cycles

The Transaction Suspend time is the total time the task was suspended and
includes:

— All task suspend (wait) time, which includes:
- The wait time for redispatch (dispatch wait)
- The wait time for first dispatch (first dispatch delay)
- The total I/0O wait and other wait times.
The First Dispatch Delay is then further broken down into:
— First Dispatch Delay due to TRANCLASS limits
— First Dispatch Delay due to MXT limits.

The CMF performance class record also provides a more detailed breakdown of the
transaction suspend (wait) time into separate data fields. These include:

Terminal 1/0 wait time

File 1/0 wait time

RLS File I/0 wait time
CFEDT server I/O wait time
Journal I/O wait time

Chapter 6. The CICS monitoring facility 71

* Temporary Storage I/O wait time

» Shared Temporary Storage I/O wait time
 Inter-Region I/O wait time

* Transient Data I/0 wait time

* LU 6.1 I/0 wait time

* LU 6.2 I/O wait time

* FEPI suspend time

* Local ENQ delay time

* Global ENQ delay time

* RRMS/MVS Indoubt wait time

* Inbound Socket I/O wait time

* Outbound Socket I/0 wait time

* RMI suspend time

* Lock Manager delay time

« EXEC CICS WAIT EXTERNAL wait time
« EXEC CICS WAITCICS and WAIT EVENT wait time
* Interval Control delay time

» "Dispatchable Wait" wait time

* IMS(DBCTL) wait time

* DB2 ready queue wait time

« DB2 connection wait time

* DB2 wait time

= 3270 bridge partner wait time

« CFDT server syncpoint wait time

* Request Receiver wait time

* Request Processor wait time

* Syncpoint delay time

» CICS BTS run process/activity synchronous wait time
* CICS MAXOPENTCBS delay time

* CICS MAXJVMTCBS delay time

* CICS MAXSSLTCBS delay time

* CICS MAXXPTCBS delay time

* CICS change-TCB mode delay time

* JVM suspend time

* TCB mismatch wait time

* MVS storage constraint wait time

| End of Product-sensitive programming interface 4|

Response time

| Product-sensitive programming interface |

You can calculate the internal CICS response time by subtracting performance data
field 005 (start time) from performance data field 006 (stop time).

[Figure 5 on page 73|shows the relationship of dispatch time, suspend time, and
CPU time with the response time.

72 CICS TS for z/OS: CICS Performance Guide

Response Time >

A

w w
= Suspend Ti Dispatch Ti =
|: +—— pen Ime P Ispatcl ime P |:
= o
o .

< First Dispatch)
= l« Dispatch pa «—— CPUTime ——»| =
%)) Delay Wait w

Figure 5. Response time relationships

| End of Product-sensitive programming interface 4,

Transaction dispatch time and CPU time

#

The transaction total dispatch time field USRDISPT, field 007 in group DFHTASK, is
the total elapsed time during which the user task was dispatched by the CICS

dispatcher domain on each CICS TCB under which the task executed.

3+

The transaction total CPU time field USRCPUT, field 008 in group DFHTASK, is the
total processor time during which the user task was dispatched by the CICS
dispatcher domain on each CICS TCB under which the task executed.

FH 3

For both these fields, the time recorded in the field can be associated with any of
the TCB modes which are managed by the CICS dispatcher in the current CICS
release. These include open TCBs, such as L8 mode TCBs, as well as non-open
TCBs, such as the QR TCB. Be aware that for each CICS release, new TCB modes
might be added or obsolete TCB modes might be removed, particularly in the case
of the open TCB modes. You should always check the performance data field
descriptions in the current release documentation to see which TCB modes are
applicable. The field descriptions are listed in ['Performance data in group|
[DFHTASK” on page 101)

FH oH o H H H FH H H

If you want to calculate a transaction's ratio of accumulated CPU time to
accumulated dispatch time (CPU/DISP ratio) for the QR TCB, use fields 255
(QRDISPT) and 256 (QRCPUT) in group DFHTASK. These fields show the elapsed
time and processor time during which the user task was dispatched on the QR TCB
only.

FHF O H H H*

The CPU/DISP ratio for an individual task should always be considered in the
context of other activity in the CICS region. The Dispatcher TCB Modes report (see
I'Dispatcher TCB Modes Report” on page 674) which is provided by the sample
statistics program DFHOSTAT includes a calculation of the CPU/DISP ratio for the
QR TCB for the whole CICS region.

H o H H H*

Wait (suspend) times

| Product-sensitive programming interface |

The performance data fields listed in[Table 4 on page 75|all record the elapsed time
spent waiting for a particular type of 1/0 operation. For example, field 009 records
the elapsed time waiting for terminal 1/0. The elapsed time includes not only that

Chapter 6. The CICS monitoring facility 73

time during which the 1/O operation is actually taking place, but also the time during
which the access method is completing the outstanding event control block, and the
time subsequent to that until the waiting CICS transaction is redispatched.

74 CICS TS for z/OS: CICS Performance Guide

Table 4. Performance class wait (suspend) fields

Field-ld Group Name | Description

009 DFHTERM | TC I/O wait time

010 DFHJOUR | JC /O wait time

011 DFHTEMP | TS I/O wait time

063 DFHFILE FC 1/0O wait time

100 DFHTERM | IR I/O wait time

101 DFHDEST |TD I/O wait time

123 DFHTASK | Global ENQ delay time

128 DFHTASK |Lock Manager delay time

129 DFHTASK | Local ENQ delay time

133 DFHTERM | TC /O wait time - LU6.1

134 DFHTERM |TC I/O wait time - LU6.2

156 DFHFEPI FEPI Suspend time

171 DFHTASK | Resource manager interface (RMI) suspend time

174 DFHFILE RLS FC I/O wait time

176 DFHFILE Coupling Facility data tables server 1/0O wait time

177 DFHSYNC | Coupling Facility data tables server syncpoint and
resynchronization wait time

178 DFHTEMP | Shared TS I/O wait time

181 DFHTASK |EXEC CICS WAIT EXTERNAL wait time

182 DFHTASK |EXEC CICS WAITCICS and WAIT EVENT wait time

183 DFHTASK |Interval Control delay time

184 DFHTASK | "Dispatchable Wait" wait time

186 DFHDATA |IMS (DBCTL) wait time

187 DFHDATA | DB2 ready queue wait time

188 DFHDATA | DB2 connection time

189 DFHDATA | DB2 wait time

191 DFHTASK | RRMS/MVS wait time

192 DFHTASK | Request Receiver wait time

193 DFHTASK | Request Processor wait time

195 DFHTASK | CICS BTS run process/activity synchronous wait time

196 DFHSYNC | Syncpoint delay time

241 DFHSOCK | Inbound Socket I/O wait time

247 DFHTASK | CICS change-TCB mode delay time

250 DFHTASK | CICS MAXOPENTCBS delay time

254 DFHTASK |Java Virtual Machine (JVM) suspend time

268 DFHTASK | TCB mismatch wait time

277 DFHTASK | CICS MAXJVMTCBS delay time

279 DFHTASK | MVS storage constraint wait time

281 DFHTASK | CICS MAXSSLTCBS delay time

282 DFHTASK | CICS MAXXPTCBS delay time

285 DFHTASK |3270 bridge partner wait time

299 DFHSOCK | Outbound Socket I/Qnhagtiértanene CICS monitoring facility 79

shows an example of the relationship between a typical transaction wait
time field, and the transaction's suspend time, dispatch time, CPU and dispatch wait

time fields.
+—— WaitTimes ——»
Dispatch Dispatch
and CPU and CPU
Time i Time
> Suspend Time <
Dispatch
Wait

Figure 6. Wait (suspend) time relationships

Improvements to the CMF suspend time and wait time measurements allow you to
perform various calculations on the suspend time accurately. For example, the
"Total 1/0 Wait Time" can be calculated as follows:

Total I/O wait time =
(Terminal control I/0O wait +
Temporary storage 1/0 wait +
Shared temporary storage I/0 wait +
Transient data I/0 wait +
Journal (MVS logger) 1/0 wait +
File control I/0O wait +
RLS file 1/0 wait +
CF data table I/O wait +
Inbound Socket I/O wait +
Outbound Socket I/0O wait +
Interregion (MRO) I/O wait +
LU 6.1 TC I/O wait +
LU 6.2 TC I/O wait +
FEPI 1/0O wait)

The "other wait time" (that is, uncaptured wait (suspend) time) can be calculated as
follows:

Total other wait time =
(First dispatch delay +
Local ENQ delay +
Global ENQ delay +
Interval control delay +
Lock manager delay +

76 CICS TS for z/OS: CICS Performance Guide

Wait external wait +

EXEC CICS WAITCICS and EXEC CICS WAIT EVENT wait +
CICS BTS run synchronous wait +
CFDT server synchronous wait +
Request Receiver wait time +
Request Processor wait time +
Syncpoint delay time +

CICS MAXOPENTCBS delay time +
CICS MAXJVMTCBS delay time +
CICS MAXSSLTCBS delay time +
CICS MAXXPTCBS delay time +
CICS change-TCB mode delay time +
RRMS/MVS wait +

3270 bridge partner wait +

RMI suspend +

JVM suspend time +

TCB mismatch wait time +

MVS storage constraint wait time +
“Dispatchable wait’s wait)

Note: The First Dispatch Delay performance class data field includes the MXT and

TRANCLASS First Dispatch Delay fields.

The Uncaptured wait time can be calculated as follows:

Uncaptured wait time =

(Suspend - (total I/0 wait time + total other wait time))

In addition to the transaction "Suspend (wait) Time" breakdown, the CMF
performance class data provides several other important transaction timing
measurements. They include:

The Program load time is the program fetch time (dispatch time) for programs
invoked by the transaction

The Exception wait time is the accumulated time from the exception conditions
as measured by the CMF exception class records. For more information, see

“Exception class data” on page 120/

The RMI elapsed time is the elapsed time the transaction spent in all Resource
Managers invoked by the transaction using the Resource Manager Interface
(RMI)

The JVM elapsed time is the elapsed time the transaction spent in the Java
Virtual Machine (JVM) for the Java programs invoked by the transaction.

The JVM initialization elapsed time is the elapsed time the transaction spent
initializing the Java Virtual Machine (JVM) environment for all the Java programs
invoked by the transaction.

The JVM reset elapsed time is the elapsed time the transaction spent resetting
the Java Virtual Machine (JVM) environment for all the Java programs invoked
by the transaction.

The Syncpoint elapsed time is the elapsed time the transaction spent processing
a syncpoint.

Chapter 6. The CICS monitoring facility 77

| End of Product-sensitive programming interface 4|

Program load time

| Product-sensitive programming interface |

shows the relationship between the program load time (field id 115) and
the dispatch time and the suspend time (fields 7 and 14).

End of Product-sensitive programming interface 4|

Response Time >
A
u L
= Suspend Time > Dispatch Time 4 =
F =
e o
E(First Dispatch @)
= l« Dispatch '3\‘,’?;3 — CPUTime ——»| 5
n Wait al
PCload
Load

Figure 7. Program load time

RMI elapsed and suspend time

| Product-sensitive programming interface |

The RMI elapsed time (group name: DFHTASK, field id: 170) and suspend time
(group name: DFHTASK, field id: 171) fields provide an insight into the amount of
time that a transaction spends in the CICS resource manager interface (RMI).

shows the relationship between the RMI elapsed time and the suspend
time (fields 170 and 171).

RMI Elapsed Time +————————————9,

Dispatch Dispatch
and CPU and CPU
Time Time

> RMI Suspend Time <
(Suspend)
Dispatch —
Wait

Figure 8. RMI elapsed and suspend time

Note: The DB2 wait, the DB2 connection wait, and the DB2 readyq wait time fields
as well as the IMS wait time field are included in the RMI suspend time.

| End of Product-sensitive programming interface 4|

78 CICS TS for z/OS: CICS Performance Guide

JVM elapsed time and suspend time

| Product-sensitive programming interface |

The JVM elapsed and suspend time fields provide an insight into the amount of
time that a transaction spends in a Java Virtual Machine (JVM).

Care must be taken when using the JVM elapsed time (group name DFHTASK,
field id: 253) and JVM suspend time (group name DFHTASK, field id: 254) fields in
any calculation with other CMF timing fields. This is because of the likelihood of
double accounting other CMF timing fields in the performance class record within
the JVM time fields. For example, if a Java application program invoked by a
transaction issues a read file (non-RLS) request using the Java API for CICS
(JCICS) classes, the file 1/0 wait time will be included in both the file I/O wait time
field (group name DFHFILE, field id: 063), and the transaction suspend time field
(group name DFHTASK, field id: 014), as well as the JVM suspend time field.

The JVM elapsed and suspend time fields are best evaluated from the overall
transaction performance view and their relationship with the transaction response
time, transaction dispatch time, and transaction suspend time. The performance
class data also includes the amount of processor (CPU) time that a transaction
used whilst in a JVM. When a transaction uses a JVM in CICS key, which runs on a
CICS J8 mode TCB, the processor time is recorded in the J8BCPUT field (group
name: DFHTASK, field id: 260). When a transaction uses a JVM in user key, which
runs on a CICS J9 mode TCB, the processor time is recorded in the JOCPUT field
(group name: DFHTASK, field id: 267).

Note: The number of Java API for CICS (JCICS) requests issued by the user task
is included in the CICS OO foundation class request count field (group
name: DFHCICS, field id: 025).

| End of Product-sensitive programming interface 4,

Syncpoint elapsed time

| Product-sensitive programming interface |

Figure 9| shows the relationship between the syncpoint elapsed time (field 173) and
the suspend time (field 14).

| End of Product-sensitive programming interface 4,

< Syncpoint Elapsed Time B>
A A
Dispatch Dispatch Dispatch
and CPU and CPU and CPU
Time . Time . Time
<«— Suspend Time —» «—— Suspend Time >
Dispatch Dispatch —»
Wait Wait

Figure 9. Syncpoint elapsed time

Chapter 6. The CICS monitoring facility 79

Storage occupancy counts

| Product-sensitive programming interface

An occupancy count measures the area under the curve of user-task storage in use
against elapsed time. The unit of measure is the “byte-unit”, where the “unit” is
equal to 1024 microseconds, or 1.024 milliseconds. Where ms is milliseconds, a
user task occupying, for example, 256 bytes for 125 milliseconds, is measured as
follows:

125 / 1.024 ms = 122 units * 256 = 31 232 byte-units.

Note: All references to “Start time” and “Stop time” in the calculations below refer
to the middle 4 bytes of each 8 byte start/stop time field. Bit 47 of Start time
or Stop time represents a unit of 16 microseconds.

To calculate response time and convert into microsecond units:
Response = ((Stop time - Start time) * 16)
To calculate number of 1024 microsecond “units”:
Units = (Response / 1024)
or
Units = ((Stop time — Start time) / 64)
To calculate the average user-task storage used from the storage
occupancy count:
Average user-task storage used = (Storage Occupancy / Units)

To calculate units per second:
Units Per Second = (1 000 000 / 1024) = 976.5625
To calculate the response time in seconds:
Response time = (((Stop time - Start time) * 16) / 1 000 000)

During the life of a user task, CICS measures, calculates, and accumulates the
storage occupancy at the following points:

» Before GETMAIN increases current user-storage values

« Before FREEMAIN reduces current user-storage values

» Just before the performance record is moved to the buffer.

80 CICS TS for z/0S: CICS Performance Guide

End of Product-sensitive programming interface 4,

< Response Time >

START TIME
STOP TIME

G F G F F G F G
G = GETMAIN

F = FREEMAIN
Dotted line = Average storage occupancy

Figure 10. Storage occupancy

Program storage

| Product-sensitive programming interface |

The level of program storage currently in use is incremented at LOAD, LINK, and
XCTL events by the size (in bytes) of the referenced program, and is decremented
at RELEASE or RETURN events. On an XCTL event, the program storage currently
in use is also decremented by the size of the program issuing the XCTL, because
the program is no longer required.

[Figure 11 on page 82 shows the relationships between the “high-water mark” data
fields that contain the maximum amounts of program storage in use by the user
task.

Chapter 6. The CICS monitoring facility 81

PCSTGHWM - high-water mark of program storage in all CICS DSAs

PC31AHWM - HWM of PC storage above 16MB

PC31CHWM - ECDSA HWM

PC31SHWM - ESDSA HWM

PC31RHWM - ERDSA HWM

16MB T1ine

PC24BHWM - HWM of PC storage below 16MB

PC24CHWM - CDSA HWM

PC24SHWM - SDSA HWM

PCZ4RHWM - RDSA HWM

Figure 11. Relationships between the “high-water mark” program storage data fields

Field PCSTGHWM (field id 087) contains the maximum amount of program storage
in use by the task both above and below the 16MB line. Fields PC31AHWM (139)
and PC24BHWM (108) are subsets of PCSTGHWM, containing the maximum
amounts in use above and below the 16MB line, respectively. Further subset-fields
contain the maximum amounts of storage in use by the task in each of the CICS
dynamic storage areas (DSAS).

Notes:

1. The totaled values of all the subsets in a superset may not necessarily equate
to the value of the superset; for example, the value of PC31AHWM plus the
value of PC24BHWM may not equal the value of PCSTGHWM. This is because
the peaks in the different types of program storage acquired by the user task do
not necessarily occur simultaneously.

2. If a task loads the same program several times, the program storage data fields
might not reflect the true high-water mark of program storage used by the task.
The fields are incremented each time the LOAD command is issued, but if the
program has already been loaded by the task, the existing copy of the program
is used, meaning that only one copy of the program actually exists in storage.
Because of this, for tasks that repeatedly load the same program, the data in
the fields PCSTGHWM, PC24BHWM, PC31RHWM, PC31AHWM, PC31CHWM,
PC24CHWM, PC24SHWM, PC31SHWM and PC24RHWM should be used with
caution.

The “high-water mark” fields are described in detail in|“User storage fields in group|
DFHSTOR:” on page 97.| For information about the program storage fields, see
‘Program storage fields in group DFHSTOR:” on page 99,

| End of Product-sensitive programming interface 4|

82 CICS TS for z/OS: CICS Performance Guide

Performance class data

The performance class data is described below in order of group name. The group
name is always in field CMODNAME of the dictionary entry.

A user task can be represented by one or more performance class monitoring
records, depending on whether the MCT event monitoring option DELIVER or the
system initialization parameters MNCONV=YES or MNSYNC=YES have been
selected. In the descriptions that follow, the term “user task” means “that part or
whole of a transaction that is represented by a performance class record”, unless
the description states otherwise.

This section covers:

» [‘Performance data in group DFHCBTS’|

* |"Performance data in group DFHCHNL” on page 85|
+ [‘Performance data in group DFHCICS” on page 85|

+ [‘Performance data in group DFHDATA” on page 87|
[‘Performance data in group DFHDEST” on page 8§
+ [“‘Performance data in group DFHDOCH?” on page 89
[‘Performance data in group DFHEJBS” on page 89
[‘Performance data in group DFHFEPI” on page 89
[‘Performance data in group DFHFILE” on page 90|

+ [‘Performance data in group DFHJOUR” on page 92|
+ [‘Performance data in group DFHMAPP” on page 92
[‘Performance data in group DFHPROG” on page 93]
[‘Performance data in group DFHRMI” on page 95|
[‘Performance data in group DFHSOCK” on page 96|
« [‘Performance data in group DFHSTOR” on page 97|
+ [‘Performance data in group DFHSYNC” on page 100
[‘Performance data in group DFHTASK” on page 101|
[‘Performance data in group DFHTEMP” on page 115
[‘Performance data in group DFHTERM” on page 116
+ [‘Performance data in group DFHWEBB” on page 119|

Performance data in group DFHCBTS

| Product-Sensitive programming interface

Group DFHCBTS contains the following performance data:

200 (TYPE-C, 'PRCSNAME', 36 BYTES)
The name of the CICS business transaction service (BTS) process of which the
user task formed part.

201 (TYPE-C, 'PRCSTYPE', 8 BYTES)
The process-type of the CICS BTS process of which the user task formed part.

202 (TYPE-C, 'PRCSID', 52 BYTES)
The CICS-assigned identifier of the CICS BTS root activity that the user task
implemented.

Chapter 6. The CICS monitoring facility 83

203 (TYPE-C, 'ACTVTYID', 52 BYTES)
The CICS-assigned identifier of the CICS BTS activity that the user task
implemented.

204 (TYPE-C, 'ACTVTYNM', 16 BYTES)
The name of the CICS BTS activity that the user task implemented.

205 (TYPE-A, 'BARSYNCT', 4 BYTES)
The number of CICS BTS run process, or run activity, requests that the user
task made in order to execute a process or activity synchronously.

206 (TYPE-A, 'BARASYCT', 4 BYTES)
The number of CICS BTS run process, or run activity, requests that the user
task made in order to execute a process or activity asynchronously.

207 (Type-A, 'BALKPACT', 4 BYTES)
The number of CICS BTS link process, or link activity, requests that the user
task issued.

208 (TYPE-A, 'BADPROCT', 4 BYTES)
The number of CICS BTS define process requests issued by the user task.

209 (TYPE-A, 'BADACTCT', 4 BYTES)
The number of CICS BTS define activity requests issued by the user task.

210 (TYPE-A, 'BARSPACT', 4 BYTES)
The number of CICS BTS reset process and reset activity requests issued by
the user task.

211 (TYPE-A, 'BASUPACT', 4 BYTES)
The number of CICS BTS suspend process, or suspend activity, requests
issued by the user task.

212 (TYPE-A, 'BARMPACT', 4 BYTES)
The number of CICS BTS resume process, or resume activity, requests issued
by the user task.

213 (TYPE-A, 'BADCPACT', 4 BYTES)
The number of CICS BTS delete activity, cancel process, or cancel activity,
requests issued by the user task.

214 (TYPE-A, 'BAACQPCT', 4 BYTES)
The number of CICS BTS acquire process, or acquire activity, requests issued
by the user task.

215 (Type-A, 'BATOTPCT', 4 BYTES)
Total number of CICS BTS process and activity requests issued by the user
task.

216 (TYPE-A, 'BAPRDCCT', 4 BYTES)
The number of CICS BTS delete, get, move, or put, container requests for
process data containers issued by the user task.

217 (TYPE-A, 'BAACDCCT', 4 BYTES)
The number of CICS BTS delete, get, move, or put, container requests for
current activity data containers issued by the user task.

218 (Type-A, 'BATOTCCT', 4 BYTES)
Total number of CICS BTS delete, get, move, or put, process container and
activity container requests issued by the user task.

219 (TYPE-A, 'BARATECT', 4 BYTES)
The number of CICS BTS retrieve-reattach event requests issued by the user
task.

84 CICS TS for z/OS: CICS Performance Guide

220 (TYPE-A, 'BADFIECT', 4 BYTES)
The number of CICS BTS define-input event requests issued by the user task.

221 (TYPE-A, 'BATIAECT', 4 BYTES)
The number of CICS BTS DEFINE TIMER EVENT, CHECK TIMER EVENT,
DELETE TIMER EVENT, and FORCE TIMER EVENT requests issued by the
user task.

222 (TYPE-A, 'BATOTECT', 4 BYTES)
Total number of CICS BTS event-related requests issued by the user task.

| End of Product-Sensitive programming interface 4|

Performance data in group DFHCHNL

Group DFHCHNL contains the following performance data:

| Product-Sensitive programming interface |

321 (TYPE-A, 'PGTOTCCT', 4 BYTES)
The number of CICS requests for channel containers issued by the user task.

322 (TYPE-A, 'PGBRWCCT', 4 BYTES)
The number of CICS browse requests for channel containers issued by the user
task.

323 (TYPE-A, 'PGGETCCT', 4 BYTES)
The number of GET CONTAINER requests for channel containers issued by the
user task.

324 (TYPE-A, 'PGPUTCCT', 4 BYTES)
The number of PUT CONTAINER requests for channel containers issued by the
user task.

325 (TYPE-A, 'PGMOVCCT', 4 BYTES)
The number of MOVE CONTAINER requests for channel containers issued by
the user task.

326 (TYPE-A, 'PGGETCDL', 4 BYTES)
The total length, in bytes, of the data in the containers of all the GET
CONTAINER CHANNEL commands issued by the user task.

327 (TYPE-A, 'PGPUTCDL', 4 BYTES)
The total length, in bytes, of the data in the containers of all the PUT
CONTAINER CHANNEL commands issued by the user task.

328 (TYPE-A, 'PGCRECCT', 4 BYTES)
The number of containers created by MOVE and PUT CONTAINER requests
for channel containers issued by the user task.

| End of Product-Sensitive programming interface 4|

Performance data in group DFHCICS

| Product-Sensitive programming interface

Group DFHCICS contains the following performance data:

005 (TYPE-T, 'START', 8 BYTES)
Start time of measurement interval. This is one of the following:

Chapter 6. The CICS monitoring facility 85

* The time at which the user task was attached

* The time at which data recording was most recently reset in support of the
MCT user event monitoring point DELIVER option or the monitoring options
MNCONV, MNSYNC, or FREQUENCY.

For more information, see [‘Clocks and time stamps” on page 70,

Note: Response Time = STOP — START. For more information, see
time” on page 72

006 (TYPE-T, 'STOP', 8 BYTES)
Finish time of measurement interval. This is either the time at which the user
task was detached, or the time at which data recording was completed in
support of the MCT user event monitoring point DELIVER option or the
monitoring options MNCONV, MNSYNC or FREQUENCY. For more information,
see [‘Clocks and time stamps” on page 70

Note: Response Time = STOP — START. For more information, see
time” on page 72.|

025 (TYPE-A, 'CFCAPICT', 4 BYTES)
Number of CICS OO foundation class requests, including the Java API for CICS
(JCICS) classes, issued by the user task.

089 (TYPE-C, 'USERID', 8 BYTES)
User identification at task creation. This can also be the remote user identifier
for a task created as the result of receiving an ATTACH request across an MRO
or APPC link with attach-time security enabled.

103 (TYPE-S, 'EXWTTIME', 8 BYTES)
Accumulated data for exception conditions. The 32-bit clock contains the total
elapsed time for which the user waited on exception conditions. The 24-bit
period count equals the number of exception conditions that have occurred for
this task. For more information, see [‘Exception class data” on page 120

Note: The performance class data field ‘exception wait time’ will be updated
when exception conditions are encountered even when the exception
class is inactive.

112 (TYPE-C, 'RTYPE', 4 BYTES)

Performance record type (low-order byte-3):
Record output for a terminal converse
Record output for a user EMP DELIVER request
Record output for a long-running transaction
Record output for a syncpoint
Record output for a task termination.

130 (TYPE-C, 'RSYSID', 4 bytes)
The name (sysid) of the remote system to which this transaction was routed
either statically or dynamically.

- »"wTMOoOO

This field also includes the connection name (sysid) of the remote system to
which this transaction was routed when using the CRTE routing transaction.
The field will be null for those CRTE transactions which establish or cancel the
transaction routing session.

Note: If the transaction was not routed or was routed locally, this field is set to
null. Also see the program name (field 71).

86 CICS TS for z/0S: CICS Performance Guide

131 (TYPE-A, 'PERRECNT', 4 bytes)
The number of performance class records written by the CICS Monitoring
Facility (CMF) for the user task.

167 (TYPE-C, 'SRVCLASS', 8 bytes)
The MVS Workload Manager (WLM) service class for this transaction. This field
is null if there are no transaction classification rules defined for CICS
subsystems in the active MVS Workload Manager (WLM) service policy, or if
the transaction was WLM-classified in another CICS region.

168 (TYPE-C, 'RPTCLASS', 8 bytes)
The MVS Workload Manager (WLM) report class for this transaction. This field
is null if there are no transaction classification rules defined for CICS
subsystems in the active MVS Workload Manager (WLM) service policy, or if
the transaction was WLM-classified in another CICS region.

| End of Product-Sensitive programming interface 4,

Performance data in group DFHDATA

| Product-Sensitive programming interface

Group DFHDATA contains the following performance data:

179 (TYPE-A, 'IMSREQCT', 4 bytes)
The number of IMS (DBCTL) requests issued by the user task.

180 (TYPE-A, 'DB2REQCT', 8 bytes)
The total number of DB2 EXEC SQL and Instrumentation Facility Interface (IFI)
requests issued by the user task.

186 (TYPE-S, 'IMSWAIT', 8 bytes)

The elapsed time in which the user task waited for DBCTL to service the IMS
requests issued by the user task.

For more information, see [‘Clocks and time stamps” on page 70,/ and [‘Wait
[(suspend) times” on page 73]

Note: This field is a component of the task suspend time, SUSPTIME (014)
field.

187 (TYPE-S, 'DB2RDYQW', 8 bytes)

The elapsed time in which the user task waited for a DB2 thread to become
available.

For more information, see [‘Clocks and time stamps” on page 70,/ and [‘Wai
|(suspend) times” on page 73]

Note: This field is a component of the task suspend time, SUSPTIME (014)
field.

188 (TYPE-S, 'DB2CONWT', 8 bytes)
When CICS is connected to DB2 Version 5 or earlier, and so is not exploiting
the open transaction environment, this field is the elapsed time in which the
user task waited for a CICS DB2 subtask to become available. When CICS is
connected to DB2 Version 6 or later, and so is using the open transaction
environment, this field is the elapsed time in which the user task waited for a
DB2 connection to become available for use with the user task's open TCB.

Chapter 6. The CICS monitoring facility 87

For more information, see [‘Clocks and time stamps” on page 70,/ and [‘Wait
[(suspend) times” on page 73.|

Note: This field is a component of the task suspend time, SUSPTIME (014)
field.

189 (TYPE-S, 'DB2WAIT', 8 bytes)
When CICS is connected to DB2 Version 5 or earlier, and so is not exploiting
the open transaction environment, this field is the elapsed time in which the
user task waited for DB2 to service the DB2 EXEC SQL and IFI requests
issued by the user task. When CICS is connected to DB2 Version 6 or later,
and so is using the open transaction environment, this field does not apply and
is zero. This is because in the open transaction environment, the CICS-DB2
attachment facility uses L8 mode open TCBs as the thread TCBs, rather than
using specially created subtask TCBs. Any waits in DB2 that occur on a L8
mode TCB are not visible to the CICS dispatcher domain.

For more information, see [‘Clocks and time stamps” on page 70, and [‘Wait
[(suspend) times” on page 73.|

Note: This field is a component of the task suspend time, SUSPTIME (014)
field.

| End of Product-Sensitive programming interface 4|

Performance data in group DFHDEST

| Product-Sensitive programming interface

Group DFHDEST contains the following performance data:

041 (TYPE-A, 'TDGETCT', 4 BYTES)
Number of transient data GET requests issued by the user task.

042 (TYPE-A, 'TDPUTCT', 4 BYTES)
Number of transient data PUT requests issued by the user task.

043 (TYPE-A, 'TDPURCT', 4 BYTES)
Number of transient data PURGE requests issued by the user task.

091 (TYPE-A, 'TDTOTCT', 4 BYTES)
Total number of transient data requests issued by the user task. This field is the
sum of TDGETCT, TDPUTCT, and TDPURCT.

101 (TYPE-S, 'TDIOWTT', 8 BYTES)
Elapsed time in which the user waited for VSAM transient data 1/0. For more
information see [‘Clocks and time stamps” on page 70,/ and ['Wait (suspend)|
times” on page 73|

Note: This field is a component of the task suspend time, SUSPTIME (014)
field.

| End of Product-Sensitive programming interface 4|

88 CICS TS for z/0S: CICS Performance Guide

Performance data in group DFHDOCH

| Product-Sensitive programming interface

Group DFHDOCH contains the following performance data:

226 (TYPE-A, 'DHCRECT', 4 bytes)
The number of document handler CREATE requests issued by the user task.

227 (TYPE-A, 'DHINSCT', 4 bytes)
The number of document handler INSERT requests issued by the user task.

228 (TYPE-A, 'DHSETCT', 4 bytes)
The number of document handler SET requests issued by the user task.

229 (TYPE-A, 'DHRETCT', 4 bytes)
The number of document handler RETRIEVE requests issued by the user task.

230 (TYPE-A, 'DHTOTCT', 4 bytes)
The total number of document handler requests issued by the user task.

240 (TYPE-A, 'DHTOTDCL', 4 bytes)
The total length of all documents created by the user task.

| End of Product-Sensitive programming interface 4,

Performance data in group DFHEJBS
Group DFHEJBS contains the following performance data:
311 (TYPE-C, 'CBSRVRNM', 4 bytes)
The CorbaServer for which this request processor instance is handling

requests. Request processor transactions can be identified using byte 4 of the
transaction flags, TRANFLAG (164), field.

312 (TYPE-A, 'EJBSACCT', 4 bytes)
The number of bean activations that have occurred in this request processor.

313 (TYPE-A, 'EJBSPACT', 4 bytes)
The number of bean passivations that have occurred in this request processor.

314 (TYPE-A, 'EJBCRECT', 4 bytes)
The number of bean creation calls that have occurred in this request processor.

315 (TYPE-A, 'EJBREMCT', 4 bytes)
The number of bean removal calls that have occurred in this request processor.

316 (TYPE-A, 'EJBMTHCT', 4 bytes)
The number of bean method calls executed in this request processor.

317 (TYPE-A, 'EJBTOTCT', 4 bytes)
The total for this request processor of fields 312—-316.

Performance data in group DFHFEPI

| Product-Sensitive programming interface

Group DFHFEPI contains the following performance data:

150 (TYPE-A,'SZALLOCT', 4 bytes)
Number of conversations allocated by the user task. This number is
incremented for each FEPI ALLOCATE POOL or FEPI CONVERSE POOL.

Chapter 6. The CICS monitoring facility 89

151 (TYPE-A,'SZRCVCT', 4 bytes)
Number of FEPI RECEIVE requests made by the user task. This number is also
incremented for each FEPI CONVERSE request.

152 (TYPE-A,'SZSENDCT', 4 bytes)
Number of FEPI SEND requests made by the user task. This number is also
incremented for each FEPI CONVERSE request.

153 (TYPE-A,'SZSTRTCT', 4 bytes)
Number of FEPI START requests made by the user task.

154 (TYPE-A,'SZCHROUT', 4 bytes)
Number of characters sent through FEPI by the user task.

155 (TYPE-A,'SZCHRIN', 4 bytes)
Number of characters received through FEPI by the user task.

156 (TYPE-S,'SZWAIT', 8 bytes)
Elapsed time in which the user task waited for all FEPI services. For more
information see [‘Clocks and time stamps” on page 70,/ and [‘Wait (suspend)|
imes” on page 73

Note: This field is a component of the task suspend time, SUSPTIME (014)
field.

157 (TYPE-A,'SZALLCTO', 4 bytes)
Number of times the user task timed out while waiting to allocate a
conversation.

158 (TYPE-A,'SZRCVTO', 4 bytes)
Number of times the user task timed out while waiting to receive data.

159 (TYPE-A,'SZTOTCT', 4 bytes)
Total number of all FEPI APl and SPI requests made by the user task.

| End of Product-Sensitive programming interface 4|

Performance data in group DFHFILE

| Product-Sensitive programming interface |

For a breakdown by individual file of some of the information provided in group
DFHFILE, you can request transaction resource monitoring. See
[resource class data” on page 126 for details.

Group DFHFILE contains the following performance data:

036 (TYPE-A, 'FCGETCT', 4 BYTES)
Number of file GET requests issued by the user task.

037 (TYPE-A, 'FCPUTCT', 4 BYTES)
Number of file PUT requests issued by the user task.

038 (TYPE-A, 'FCBRWCT', 4 BYTES)
Number of file browse requests issued by the user task. This number excludes
the START and END browse requests.

039 (TYPE-A, 'FCADDCT', 4 BYTES)
Number of file ADD requests issued by the user task.

90 CICS TS for z/OS: CICS Performance Guide

040 (TYPE-A, 'FCDELCT', 4 BYTES)

Number of file DELETE requests issued by the user task.

063 (TYPE-S, 'FCIOWTT', 8 BYTES)

Elapsed time in which the user task waited for file I/O. For more information,

see [‘Clocks and time stamps” on page 70, and ['Wait (suspend) times” on pagel

Note: This field is a component of the task suspend time, SUSPTIME (014)

field.

070 (TYPE-A, 'FCAMCT', 4 BYTES)

Number of times the user task invoked file access-method interfaces. This
number excludes requests for OPEN and CLOSE.

093 (TYPE-A, 'FCTOTCT', 4 BYTES)

Total number of file control requests issued by the user task. This number
excludes any request for OPEN, CLOSE, ENABLE, or DISABLE of a file.

How EXEC CICS file commands correspond to file control monitoring fields is

shown in

Table 5. EXEC CICS file commands related to file control monitoring fields

EXEC CICS command

Monitoring fields

READ

FCGETCT and FCTOTCT

READ UPDATE

FCGETCT and FCTOTCT

DELETE (after READ UPDATE)

FCDELCT and FCTOTCT

DELETE (with RIDFLD)

FCDELCT and FCTOTCT

REWRITE FCPUTCT and FCTOTCT
WRITE FCADDCT and FCTOTCT
STARTBR FCTOTCT
READNEXT FCBRWCT and FCTOTCT
READNEXT UPDATE FCBRWCT and FCTOTCT
READPREV FCBRWCT and FCTOTCT
READPREV UPDATE FCBRWCT and FCTOTCT
ENDBR FCTOTCT
RESETBR FCTOTCT
UNLOCK FCTOTCT

Note: The number of STARTBR, ENDBR, RESETBR, and UNLOCK file control
requests can be calculated by subtracting the file request counts,
FCGETCT, FCPUTCT, FCBRWCT, FCADDCT, and FCDELCT from the

total file request count, FCTOTCT.

174 (TYPE-S, 'RLSWAIT', 8 BYTES)
Elapsed time in which the user task waited for RLS file I/O. For more
information, see[‘Clocks and time stamps” on page 70,|and [‘Wait (suspend)|
times” on page 73.|

Note: This field is a component of the task suspend time, SUSPTIME (014)
field.

Chapter 6. The CICS monitoring facility 91

175 (TYPE-S, 'RLSCPUT', 8 BYTES)
The RLS File Request CPU (SRB) time field (RLSCPUT) is the SRB CPU time
this transaction spent processing RLS file requests. This field should be added
to the transaction CPU time field (USRCPUT) when considering the
measurement of the total CPU time consumed by a transaction. Also, this field
cannot be considered a subset of any other single CMF field (including
RLSWAIT). This is because the RLS field requests execute asynchronously
under an MVS SRB which can be running in parallel with the requesting
transaction. It is also possible for the SRB to complete its processing before the
requesting transaction waits for the RLS file request to complete.

Note: This clock field could contain a CPU time of zero with a count of greater
than zero. This is because the CMF timing granularity is measured in 16
microsecond units and the RLS file request(s) may complete in less than
that time unit.

176 (TYPE-S, 'CFDTWAIT', 8 BYTES)
Elapsed time in which the user task waited for a data table access request to
the Coupling Facility Data Table server to complete. For more information, see
f‘Clocks and time stamps” on page 70,|and [‘Wait (suspend) times” on page 73]

Note: This field is a component of the task suspend time, SUSPTIME (014)
field.

| End of Product-Sensitive programming interface 4|

Performance data in group DFHJOUR

| Product-Sensitive programming interface

Group DFHJOUR contains the following performance data:

010 (TYPE-S, 'JCIOWTT', 8 BYTES)
Elapsed time for which the user task waited for journal (logstream) I/O. For
more information, see[“Clocks and time stamps” on page 70, and [‘Wait|
[(suspend) times” on page 73.|

Note: This field is a component of the task suspend time, SUSPTIME (014)
field.

058 (TYPE-A, 'JNLWRTCT', 4 BYTES)
Number of journal write requests issued by the user task.

172 (TYPE-A, 'LOGWRTCT', 4 BYTES)
Number of CICS log stream write requests issued by the user task.

| End of Product-Sensitive programming interface 4|

Performance data in group DFHMAPP

| Product-Sensitive programming interface

Group DFHMAPP contains the following performance data:

050 (TYPE-A, 'BMSMAPCT', 4 BYTES)
Number of BMS MAP requests issued by the user task. This field corresponds

92 CICS TS for z/OS: CICS Performance Guide

to the number of RECEIVE MAP requests that did not incur a terminal 1/O, and
the number of RECEIVE MAP FROM requests.

051 (TYPE-A, 'BMSINCT', 4 BYTES)
Number of BMS IN requests issued by the user task. This field corresponds to
the number of RECEIVE MAP requests that incurred a terminal 1/O.

052 (TYPE-A, 'BMSOUTCT', 4 BYTES)
Number of BMS OUT requests issued by the user task. This field corresponds
to the number of SEND MAP requests.

090 (TYPE-A, 'BMSTOTCT', 4 BYTES)
Total number of BMS requests issued by the user task. This field is the sum of
BMS RECEIVE MAP, RECEIVE MAP FROM, SEND MAP, SEND TEXT, and
SEND CONTROL requests issued by the user task.

| End of Product-Sensitive programming interface 4,

Performance data in group DFHPROG

| Product-Sensitive programming interface

Group DFHPROG contains the following performance data:

055 (TYPE-A, 'PCLINKCT', 4 BYTES)
Number of program LINK requests issued by the user task, including the link to
the first program of the user task. This field does not include program LINK
URM (user-replaceable module) requests.

056 (TYPE-A, 'PCXCTLCT', 4 BYTES)
Number of program XCTL requests issued by the user task.

057 (TYPE-A, 'PCLOADCT', 4 BYTES)
Number of program LOAD requests issued by the user task.

071 (TYPE-C, 'PGMNAME', 8 BYTES)
The name of the first program invoked at attach-time.

For a remote transaction:

 If this CICS definition of the remote transaction does not specify a program
name, this field contains blanks.

« If this CICS definition of the remote transaction specifies a program name,
this field contains the name of the specified program. (Note that this is not
necessarily the program that is run on the remote system.)

For a dynamically-routed transaction, if the dynamic transaction routing program
routes the transaction locally and specifies an alternate program name, this field
contains the name of the alternate program.

For a dynamic program link (DPL) mirror transaction, this field contains the
initial program name specified in the dynamic program LINK request. DPL
mirror transactions can be identified using byte 1 of the transaction flags,
TRANFLAG (164), field.

For an ONC RPC or WEB alias transaction, this field contains the initial
application program name invoked by the alias transaction. ONC RPC or WEB
alias transactions can be identified using byte 1 of the transaction flags,
TRANFLAG (164), field.

Chapter 6. The CICS monitoring facility 93

For an ECI over TCP/IP transaction, this field contains the name of the
application program specified in the External Call Interface (ECI) request from
the client application.

072 (TYPE-A, 'PCLURMCT', 4 BYTES)
Number of program LINK URM (user-replaceable module) requests issued by,
or on behalf of, the user task.

A user-replaceable module (or user-replaceable program) is a CICS-supplied

program that is always invoked at a particular point in CICS processing, as if it

were part of the CICS code. You can modify the supplied program by including

your own logic, or replace it with a version that you write yourself.

The CICS-supplied user-replaceable modules are:

* bridge exit program — DFHOCBRE, DFHOCBAE, DFHWBLT, or user
specified

* CICS-JVM interface program — DFHJVMAT

* distributed dynamic routing program — DFHDSRP (or user specified)

» document template exit program — user specified on the DOCTEMPLATE
resource definition

» dynamic routing program — DFHDYP (or user specified)

* Internet Inter-ORB Protocol (IIOP) inbound request security exit program —
DFHXOPUS

* node error program — DFHNEP

» program autoinstall program — DFHPGAXX (or user specified)
» program error program — DFHPEP

» terminal autoinstall program(s) — DFHZATDX/DFHZATDY
 terminal error program — DFHTEP

 transaction restart program — DFHRTY

» CICS-DBCTL interface status program — DFHDBUEX

+ CICS-DB2 dynamic plan exit program — DSNCUEXT

» EJB Distinguished Name program — DFHEJDNXx

For detailed information on CICS user-replaceable programs, see the CIC
[Customization Guide

073 (TYPE-A, 'PCDPLCT', 4 BYTES)
Number of distributed program link (DPL) requests issued by the user task.

113 (TYPE-C, 'ABCODEO', 4 BYTES)
Original abend code.

114 (TYPE-C, 'ABCODEC', 4 BYTES)
Current abend code.

115 (TYPE-S, 'PCLOADTM', 8 BYTES)
Elapsed time in which the user task waited for program library (DFHRPL)
fetches. Only fetches for programs with installed program definitions or
autoinstalled as a result of application requests are included in this figure.
However, installed programs residing in the LPA are not included (because they
do not incur a physical fetch from a library). For more information about
program load time, see [‘Clocks and time stamps” on page 70,/ and [‘Program|
load time” on page 78/

286 (TYPE-A, 'PCDLCSDL', 4 BYTES)
The total length, in bytes, of the data in the containers of all the distributed

94 CICS TS for z/OS: CICS Performance Guide

program link (DPL) requests issued with the CHANNEL option by the user task.
This total includes the length of any headers to the data.

287 (TYPE-A, 'PCDLCRDL', 4 BYTES)
The total length, in bytes, of the data in the containers of all DPL RETURN
CHANNEL commands issued by the user task. This total includes the length of
any headers to the data.

306 (TYPE-A, 'PCLNKCCT', 4 BYTES)
Number of local program LINK requests, with the CHANNEL option, issued by
the user task.

Note: This field is a subset of the program LINK requests field, PCLINKCT
(055).

307 (TYPE-A, 'PCXCLCCT', 4 BYTES)
Number of program XCTL requests issued with the CHANNEL option by the
user task.

Note: This field is a subset of the program XCTL requests field, PCXCTLCT
(056).

308 (TYPE-A, 'PCDPLCCT', 4 BYTES)
Number of program distributed program link (DPL) requests issued with the
CHANNEL option by the user task.

Note: This field is a subset of the distributed program link requests field,
PCDPLCT (073).

309 (TYPE-A, 'PCRTNCCT', 4 BYTES)
Number of remote pseudoconversational RETURN requests, with the
CHANNEL option, issued by the user task.

310 (TYPE-A, 'PCRTNCDL', 4 BYTES)
The total length, in bytes, of the data in the containers of all the remote
pseudoconversational RETURN CHANNEL commands issued by the user task.
This total includes the length of any headers to the data.

| End of Product-Sensitive programming interface 4|

Performance data in group DFHRMI

| Product-Sensitive programming interface

Group DFHRMI is present in the performance class record only if RMI=YES is
specified on the DFHMCT TYPE=INITIAL macro.
Group DFHRMI contains the following performance data:

001 (TYPE-S, 'RMITOTAL', 8 BYTES)
The total elapsed time spent in the CICS Resource Manager Interface (RMI).

For more information, see [‘Clocks and time stamps” on page 70,/ and [‘RMI|
|e|apsed and suspend time” on page 78

002 (TYPE-S, 'RMIOTHER', 8 BYTES)
The total elapsed time spent in the CICS RMI for resource manager requests
other than DB2, DBCTL, EXEC DLI, WebSphere® MQ, CICSPlex SM, and
CICS TCP/IP socket requests.

Chapter 6. The CICS monitoring facility 95

003 (TYPE-S, 'RMIDB2', 8 BYTES)
The total elapsed time spent in the CICS RMI for DB2 requests.

004 (TYPE-S, 'RMIDBCTL', 8 BYTES)
The total elapsed time spent in the CICS RMI for DBCTL requests.

005 (TYPE-S, 'RMIEXDLI', 8 BYTES)
The total elapsed time spent in the CICS RMI for EXEC DLI requests.

006 (TYPE-S, 'RMIMQM', 8 BYTES)
The total elapsed time spent in the CICS RMI for WebSphere MQ requests.

007 (TYPE-S, 'RMICPSM', 8 BYTES)
The total elapsed time spent in the CICS RMI for CICSPlex SM requests.

008 (TYPE-S, 'RMITCPIP', 8 BYTES)
The total elapsed time spent in the CICS RMI for CICS TCP/IP socket requests.

For more information, see the RMI parameter on the DFHMCT TYPE=INITIAL
macro in the CICS Resource Definition Guide)

| End of Product-Sensitive programming interface 4|

Performance data in group DFHSOCK

| Product-Sensitive programming interface

Group DFHSOCK contains the following performance data:

241 (TYPE-S, 'SOIOWTT', 8 BYTES)
‘The elapsed time in which the user task waited for inbound socket I/O. For
more information, see[‘Clocks and time stamps” on page 70,/ and ['Wait|
[(suspend) times” on page 73.|

Note: This field is a component of the task suspend time, SUSPTIME (O14),
field.

242 (TYPE-A, 'SOBYENCT', 4 BYTES)
The number of bytes encrypted by the secure sockets layer for the user task.

243 (TYPE-A, 'SOBYDECT', 4 BYTES)
The number of bytes decrypted by the secure sockets layer for the user task.

244 (TYPE-C, 'CLIPADDR', 16 BYTES)
The client IP address (nnn.nnn.nnn.nnn)

245 (TYPE-C, 'TCPSRVCE', 8 BYTES)
The TCP/IP service name which attached the user task.

246 (TYPE-A, 'PORTNUM', 4 BYTES)
The TCP/IP port number of the TCP/IP service which attached the user task.

289 (TYPE-A, 'SOEXTRCT', 4 BYTES)
The number of EXTRACT TCPIP and EXTRACT CERTIFICATE requests issued
by the user task.

290 (TYPE-A, 'SOCNPSCT',4 BYTES)
The total number of requests made by the user task to create a non-persistent
outbound socket.

291 (TYPE-A,'SOCPSCT',4 BYTES)
The total number of requests made by the user task to create a persistent
outbound socket.

96 CICS TS for z/OS: CICS Performance Guide

292 (TYPE-A,'SONPSHWM',4 BYTES)
The peak number of non-persistent outbound sockets owned by the user task.

293 (TYPE-A,'SOPSHWM',4 BYTES)
The peak number of persistent outbound sockets owned by the user task.

294 (TYPE-A, 'SORCVCT',4 BYTES)
The total number of receive requests issued for outbound sockets (persistent
and non-persistent) by the user task.

295 (TYPE-A,'SOCHRIN',4 BYTES)
The total number of bytes received on outbound sockets by the user task

296 (TYPE-A,'SOSENDCT',4 BYTES)
The total number of send requests issued for outbound sockets (persistent and
non-persistent) by the user task.

297 (TYPE-A, 'SOCHROUT',4 BYTES)
The total number of bytes sent on outbound sockets by the user task.

298 (TYPE-A, 'SOTOTCT', 4 BYTES)
The total number of socket requests issued by the user task.

299 (TYPE-S, 'SOOIOWTT ', 8 BYTES)
The total elapsed time the user task waited on outbound sockets. For more
information, see[“Clocks and time stamps” on page 70,|and [‘Wait (suspend)|
times” on page 73

Note: This field is a component of the task suspend time, SUSPTIME (O14),
field.

301 (TYPE-A, 'SOMSGIN1', 4 BYTES)
The number of inbound socket RECEIVE requests issued by the user task.

302 (TYPE-A, 'SOCHRIN1', 4 BYTES)
The number of characters received by inbound socket RECEIVE requests
issued by the user task.

303 (TYPE-A, 'SOMSGOUl', 4 BYTES)
The number of inbound socket SEND requests issued by the user task.

304 (TYPE-A, 'SOCHROUl1', 4 BYTES)
The number of characters sent by inbound socket SEND requests issued by the
user task.

| End of Product-Sensitive programming interface 4,

Performance data in group DFHSTOR
User storage fields in group DFHSTOR:

| Product-Sensitive programming interface |

033 (TYPE-A, 'SCUSRHWM', 4 BYTES)
Maximum amount (high-water mark) of user storage allocated to the user task
below the 16MB line, in the user dynamic storage area (UDSA).

054 (TYPE-A, 'SCUGETCT', 4 BYTES)
Number of user-storage GETMAIN requests issued by the user task below the
16MB line, in the UDSA.

Chapter 6. The CICS monitoring facility 97

98

095 (TYPE-A, 'SCUSRSTG', 8 BYTES)
Storage occupancy of the user task below the 16MB line, in the UDSA. This
measures the area under the curve of storage in use against elapsed time. For
more information about storage occupancy, see [‘Storage occupancy counts” on|

page 80.

105 (TYPE-A, 'SCUGETCT', 4 BYTES)
Number of user-storage GETMAIN requests issued by the user task for storage
above the 16MB line, in the extended user dynamic storage area (EUDSA).

106 (TYPE-A, 'SCUSRHWM', 4 BYTES)
Maximum amount (high-water mark) of user-storage allocated to the user task
above the 16MB line, in the EUDSA.

107 (TYPE-A, 'SCUSRSTG', 8 BYTES)
Storage occupancy of the user task above the 16MB line, in the EUDSA. This
measures the area under the curve of storage in use against elapsed time. For
more information, see |“Storage occupancy counts” on page 80.|

116 (TYPE-A, 'SC24CHWM', 4 BYTES)
Maximum amount (high-water mark) of user-storage allocated to the user task
below the 16MB line, in the CICS dynamic storage area (CDSA).

117 (TYPE-A, 'SCCGETCT', 4 BYTES)
Number of user-storage GETMAIN requests issued by the user task for storage
below the 16MB line, in the CDSA.

118 (TYPE-A, 'SC24C0CC', 8 BYTES)
Storage occupancy of the user task below the 16MB line, in the CDSA. This
measures the area under the curve of storage in use against elapsed time. For
more information, see[‘Storage occupancy counts” on page 80,

119 (TYPE-A, 'SC31CHWM', 4 BYTES)
Maximum amount (high-water mark) of user-storage allocated to the user task
above the 16MB line, in the extended CICS dynamic storage area (ECDSA).

120 (TYPE-A, 'SCCGETCT', 4 BYTES)
Number of user-storage GETMAIN requests issued by the user task for storage
above the 16MB line, in the ECDSA.

121 (TYPE-A, 'SC31C0CC', 8 BYTES)
Storage occupancy of the user task above the 16MB line, in the ECDSA. This
measures the area under the curve of storage in use against elapsed time. For
more information, see [‘Storage occupancy counts” on page 80|

Table 6. User storage field id cross reference

Field UDSA EUDSA CDSA ECDSA
Getmain count 054 105 117 120
High-water-mark 033 106 116 119
Occupancy 095 107 118 121

CICS TS for z/OS: CICS Performance Guide

End of Product-Sensitive programming interface 4|

Shared storage fields in group DFHSTOR:

| Product-Sensitive programming interface |

144 (TYPE-A, 'SC24SGCT', 4 BYTES)
Number of storage GETMAIN requests issued by the user task for shared
storage below the 16MB line, in the CDSA or SDSA.

145 (TYPE-A, 'SC24GSHR', 4 BYTES)
Number of bytes of shared storage GETMAINed by the user task below the
16MB line, in the CDSA or SDSA.

146 (TYPE-A, 'SC24FSHR', 4 BYTES)
Number of bytes of shared storage FREEMAINed by the user task below the
16MB line, in the CDSA or SDSA.

147 (TYPE-A, 'SC31SGCT', 4 BYTES)
Number of storage GETMAIN requests issued by the user task for shared
storage above the 16MB line, in the ECDSA or ESDSA.

148 (TYPE-A, 'SC31GSHR', 4 BYTES)
Number of bytes of shared storage GETMAINed by the user task above the
16MB line, in the ECDSA or ESDSA.

149 (TYPE-A, 'SC31FSHR', 4 BYTES)
Number of bytes of shared storage FREEMAINed by the user task above the
16MB line, in the ECDSA or ESDSA.

| End of Product-Sensitive programming interface 4,

Program storage fields in group DFHSTOR:

| Product-Sensitive programming interface |

For more information on program storage see[“Storage manager statistics” on page

Note: If a task loads the same program several times, the fields in this group might
not reflect the true high-water mark of program storage used by the task.
The fields are incremented each time the LOAD command is issued, but if
the program has already been loaded by the task, the existing copy of the
program is used, meaning that only one copy of the program actually exists
in storage. Because of this, for tasks that repeatedly load the same program,
the data in the fields PCSTGHWM, PC24BHWM, PC31RHWM, PC31AHWM,
PC31CHWM, PC24CHWM, PC24SHWM, PC31SHWM and PC24RHWM
should be used with caution.

087 (TYPE-A, 'PCSTGHWM', 4 BYTES)
Maximum amount (high-water mark) of program storage in use by the user task
both above and below the 16MB line.

108 (TYPE-A, 'PC24BHWM', 4 BYTES)
Maximum amount (high-water mark) of program storage in use by the user task
below the 16MB line. This field is a subset of PCSTGHWM (field id 087) that
resides below the 16MB line.

122 (TYPE-A, 'PC31RHWM', 4 BYTES)
Maximum amount (high-water mark) of program storage in use by the user task

Chapter 6. The CICS monitoring facility 99

above the 16MB line, in the extended read-only dynamic storage area
(ERDSA). This field is a subset of PC31AHWM (field id 139) that resides in the
ERDSA.

139 (TYPE-A, 'PC31AHWM', 4 BYTES)
Maximum amount (high-water mark) of program storage in use by the user task
above the 16MB line. This field is a subset of PCSTGHWM (field id 087) that
resides above the 16MB line.

142 (TYPE-A, 'PC31CHWM', 4 BYTES)
Maximum amount (high-water mark) of program storage in use by the user task
above the 16MB line, in the extended CICS dynamic storage area (ECDSA).
This field is a subset of PC31AHWM (139) that resides in the ECDSA.

143 (TYPE-A, 'PC24CHWM', 4 BYTES)
Maximum amount (high-water mark) of program storage in use by the user task
below the 16MB line, in the CICS dynamic storage area (CDSA). This field is a
subset of PC24BHWM (108) that resides in the CDSA.

160 (TYPE-A, 'PC24SHWM', 4 BYTES)
Maximum amount (high-water mark) of program storage in use by the user task
below the 16MB line, in the shared dynamic storage area (SDSA). This field is
a subset of PC24BHWM (108) that resides in the SDSA.

161 (TYPE-A, 'PC31SHWM', 4 BYTES)
Maximum amount (high-water mark) of program storage in use by the user task
above the 16MB line, in the extended shared dynamic storage area (ESDSA).
This field is a subset of PC31AHWM (139) that resides in the ESDSA.

162 (TYPE-A, 'PC24RHWM', 4 BYTES)
Maximum amount (high-water mark) of program storage in use by the user task
below the 16MB line, in the read-only dynamic storage area (RDSA). This field
is a subset of PC24BHWM (108) that resides in the RDSA.

| End of Product-Sensitive programming interface 4|

Performance data in group DFHSYNC

| Product-Sensitive programming interface

Group DFHSYNC contains the following performance data:

060 (TYPE-A, 'SPSYNCCT', 4 BYTES)
Number of SYNCPOINT requests issued during the user task.
Notes:
1. A SYNCPOINT is implicitly issued as part of the task-detach processing.
2. A SYNCPOINT is issued at PSB termination for DBCTL.
173 (TYPE-S, 'SYNCTIME', 8 BYTES)

Total elapsed time for which the user task was dispatched and was processing
Syncpoint requests.

177 (TYPE-S, 'SRVSYWTT', 8 BYTES)
Total elapsed time in which the user task waited for syncpoint or
resynchronization processing using the Coupling Facility data tables server to
complete.

100 CICS TS for z/0S: CICS Performance Guide

Note: This field is a component of the task suspend time, SUSPTIME (O14),
field.

196 (TYPE-S, 'SYNCDLY', 8 BYTES)
The elapsed time in which the user task waited for a syncpoint request to be
issued by it's parent transaction. The user task was executing as a result of the
parent task issuing a CICS BTS run-process or run-activity request to execute a
process or activity synchronously. For more information, see [‘Clocks and time|
lstamps” on page 70, and [‘Wait (suspend) times” on page 73|

Note: This field is a component of the task suspend time, SUSPTIME (014)
field.

199 (TYPE-S,'OTSINDWT',8 BYTES)
The elapsed time in which the user task was dispatched and/or suspended
indoubt whilst processing a syncpoint for an Object Transaction Service (OTS)
syncpoint request. For more information, see |“Clocks and time stamps” on page|
and ['Wait (suspend) times” on page 73.

Note: This field is a component of the task suspend time, SUSPTIME (014)
field.

| End of Product-Sensitive programming interface 4|

Performance data in group DFHTASK

| Product-Sensitive programming interface

Group DFHTASK contains the following performance data:

001 (TYPE-C, 'TRAN', 4 BYTES)
Transaction identification.

004 (TYPE-C,'TTYPE',4 BYTES)
Transaction start type. The high-order bytes (0 and 1) are set to:
"TO" Attached from terminal input
"s" Attached by automatic transaction initiation (ATI) without data
"SD" Attached by automatic transaction initiation (ATI) with data
"QD" Attached by transient data trigger level
"u" Attached by user request
"TP" Attached from terminal TCTTE transaction ID
"SZ" Attached by Front End Programming Interface (FEPI).

007 (TYPE-S, 'USRDISPT', 8 BYTES)
Total elapsed time during which the user task was dispatched on each CICS
TCB under which the task executed. This can include all TCB modes managed
by the CICS dispatcher: QR, RO, CO, FO, SZ ,RP, SL, SP, SO, J8, J9, L8, L9,
S8, X8, X9, JM and D2. Be aware that for each CICS release, new TCB modes
might be added to this list, or obsolete TCB modes might be removed. For
more information about dispatch time and CPU time, see [‘Transaction dispatchl
time and CPU time” on page 73

008 (TYPE-S, 'USRCPUT', 8 BYTES)
Processor time for which the user task was dispatched on each CICS TCB
under which the task executed. This can include all TCB modes managed by
the CICS dispatcher: QR, RO, CO, FO, Sz, RP, SL, SP, SO, J8, J9, L8, L9, S8,
X8, X9, JM and D2. Be aware that for each CICS release, new TCB modes

Chapter 6. The CICS monitoring facility 101

102

might be added to this list, or obsolete TCB modes might be removed. For
more information about dispatch time and CPU time, see [‘Transaction dispatch
time and CPU time” on page 73]

014 (TYPE-S, 'SUSPTIME', 8 BYTES)

Total elapsed wait time for which the user task was suspended by the

dispatcher. This includes:

* The elapsed time waiting for the first dispatch. This also includes any delay
incurred because of the limits set for this transaction’s transaction class (if
any) or by the system parameter MXT being reached.

* The task suspend (wait) time.

* The elapsed time waiting for redispatch after a suspended task has been
resumed.

For more information, see |“Wait (suspend) times” on page 73.|

031 (TYPE-P, 'TRANNUM', 4 BYTES)
Transaction identification number.

Note: The transaction number field is normally a 4-byte packed decimal
number. However, some CICS system tasks are identified by special
character ‘transaction numbers’, as follows:

« ‘Il for system initialization task
* ‘TCP’ for terminal control.

These special identifiers are placed in bytes 2 through 4. Byte 1 is a
blank (X'40') before the terminal control TCP identifier, and a null value
(X'00") before the others.

059 (TYPE-A, 'ICPUINCT', 4 BYTES)
Number of interval control START or INITIATE requests during the user task.

064 (TYPE-A, 'TASKFLAG', 4 BYTES)
Task error flags, a string of 32 bits used for signaling unusual conditions
occurring during the user task:

Bit0 Reserved

Bit 1 Detected an attempt either to start a user clock that was already
running, or to stop one that was not running

Bits 2-31
Reserved

065 (TYPE-A, 'ICSTACCT', 4 BYTES)
Total number of local interval control START requests, with the CHANNEL
option, issued by the user task.

066 (TYPE-A, 'ICTOTCT', 4 BYTES)
Total number of Interval Control Start, Cancel, Delay, and Retrieve requests
issued by the user task.

082 (TYPE-C, 'TRNGRPID', 28 BYTES)
The transaction group ID is assigned at transaction attach time, and can be
used to correlate the transactions that CICS executes for the same incoming
work request (for example, the CWXN and CWBA transactions for Web
requests). This transaction group ID relationship is useful when applied to the
requests that originate through the CICS Web, IIOP, ECI over TCP/IP, 3270
bridge interface, or EJB logical server, as indicated by the transaction origin in
Byte 4 of the transaction flags field (group name DFHTASK, field ID 164).

CICS TS for z/OS: CICS Performance Guide

097 (TYPE-C, 'NETUOWPX', 20 BYTES)
Fully qualified name by which the originating system is known to the VTAM
network. This name is assigned at attach time using either the netname derived
from the TCT (when the task is attached to a local terminal), or the netname
passed as part of an ISC APPC or IRC attach header. At least three padding
bytes (X'00') are present at the right end of the name.

If the originating terminal is VTAM across an ISC APPC or IRC link, the
NETNAME is the networkid.LUname. If the terminal is non-VTAM, the
NETNAME is networkid.generic_applid.

All originating information passed as part of an ISC LUTYPES6.1 attach header
has the same format as the non-VTAM terminal originators above.

When the originator is communicating over an external CICS interface (EXCI)
session, the name is a concatenation of:

'"DFHEXCIU MVS Id Address Space Id (ASID)'
8 bytes 1 byte 4 bytes 4 bytes

derived from the originating system. That is, the name is a 17-byte LU name
consisting of:

* An 8-byte eye-catcher set to ‘DFHEXCIU’.

* A 1-byte field containing a period (.).

* A 4-byte field containing the MVSID, in characters, under which the client
program is running.

* A 4-byte field containing the address space id (ASID) in which the client

program is running. This field contains the 4-character EBCDIC
representation of the 2-byte hex address space id.

098 (TYPE-C, 'NETUOWSX', 8 BYTES)
Name by which the network unit of work id is known within the originating
system. This name is assigned at attach time using either an STCK-derived
token (when the task is attached to a local terminal), or the network unit of work
id passed as part of an ISC (APPC) or IRC (MRO) attach header.

The first six bytes of this field are a binary value derived from the system clock
of the originating system and which can wrap round at intervals of several
months.

The last two bytes of this field are for the period count. These may change
during the life of the task as a result of syncpoint activity.

Note: When using MRO or ISC, the NETUOWSX field must be combined with
the NETUOWPX field (097) to uniquely identify a task, because
NETUOWSKX is unique only to the originating CICS system.

102 (TYPE-S, 'DISPWTT', 8 BYTES)
Elapsed time for which the user task waited for redispatch. This is the
aggregate of the wait times between each event completion and user-task
redispatch.

Note: This field does not include the elapsed time spent waiting for first
dispatch. This field is a component of the task suspend time, SUSPTIME
(014), field.

109 (TYPE-C, 'TRANPRI', 4 BYTES)
Transaction priority when monitoring of the task was initialized (low-order
byte-3).

Chapter 6. The CICS monitoring facility 103

123 (TYPE-S, 'GNQDELAY', 8 BYTES)
The elapsed time waiting for a CICS task control global enqueue. For more
information, see[‘Clocks and time stamps” on page 70.|

Note: This field is a subset of the task suspend time, SUSPTIME (014), field.

124 (TYPE-C, 'BRDGTRAN', 4 BYTES)
Bridge listener transaction identifier. For CICS 3270 Bridge transactions, this
field is the name of the Bridge listener transaction which attached the user task.

125 (TYPE-S, 'DSPDELAY', 8 BYTES)
The elapsed time waiting for first dispatch.

Note: This field is a component of the task suspend time, SUSPTIME (014),
field. For more information, see |“Clocks and time stamps” on page 70.|

126 (TYPE-S, 'TCLDELAY', 8 BYTES)
The elapsed time waiting for first dispatch which was delayed because of the
limits set for this transaction’s transaction class, TCLSNAME (166), being
reached. For more information, see [‘Clocks and time stamps” on page 70

Note: This field is a subset of the first dispatch delay, DSPDELAY (125), field.

127 (TYPE-S, 'MXTDELAY', 8 BYTES)
The elapsed time waiting for first dispatch which was delayed because of the
limits set by the system parameter, MXT, being reached.

Note: The field is a subset of the first dispatch delay, DSPDELAY (125), field.

128 (TYPE-S, 'LMDELAY', 8 BYTES)
The elapsed time that the user task waited to acquire a lock on a resource. A
user task cannot explicitly acquire a lock on a resource, but many CICS
modules lock resources on behalf of user tasks using the CICS lock manager
(LM) domain.

For more information about CICS lock manager, see [the CICS Problem|
[Determination Guidel

For information about times, see [‘Clocks and time stamps” on page 70, and
['Wait (suspend) times” on page 73.|

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

129 (TYPE-S, 'ENQDELAY', 8 BYTES)
The elapsed time waiting for a CICS task control local enqueue. For more
information, see[“‘Clocks and time stamps” on page 70.|

Note: This field is a subset of the task suspend time, SUSPTIME (014), field.

132 (TYPE-T, 'RMUOWID', 8 BYTES)
The identifier of the unit of work (unit of recovery) for this task. Unit of recovery
values are used to synchronize recovery operations among CICS and other
resource managers, such as IMS and DB2.

163 (TYPE-C, 'FCTYNAME', 4 BYTES)
Transaction facility name. This field is null if the transaction is not associated
with a facility. The transaction facility type (if any) can be identified using byte 0
of the transaction flags, TRANFLAG, (164) field.

104 CICS TS for z/OS: CICS Performance Guide

164 (TYPE-A, 'TRANFLAG', 8 BYTES)
Transaction flags, a string of 64 bits used for signaling transaction definition and
status information:

Byte 0

Byte 1

Byte 2

Byte 3

Transaction facility identification

Bit 0 Transaction facility name = none (x'80")

Bit 1 Transaction facility name = terminal (x'40")
If this Bit is set, FCTYNAME and TERM contain the same
terminal id.

Bit 2 Transaction facility name = surrogate (x'20")

Bit 3 Transaction facility name = destination (x'10")

Bit 4 Transaction facility name = 3270 bridge (x'08')

Bits 5-7

Reserved

Transaction identification information

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

System transaction (x'80")

Mirror transaction (x'40")

DPL mirror transaction (x'20")
ONC/RPC Alias transaction (x'10")
WEB Alias transaction (x'08")
3270 Bridge transaction (x'04")
Reserved (x'02")

CICS BTS Run transaction

MVS workload manager request (transaction) completion information

Bit 0 Report the total response time (begin-to-end phase) for
completed work request (transaction)

Bit 1 Notify that the entire execution phase of the work request is
complete

Bit 2 Notify that a subset of the execution phase of the work request
is complete

Bits 3-7

Reserved

Transaction definition information

Bit 0 Taskdataloc = below (x'80'")
Bit 1 Taskdatakey = cics (x'40')
Bit2 Isolate = no (x'20")

Bit3 Dynamic = yes (x'10")

Bits 4-7

Reserved

Chapter 6. The CICS monitoring facility 105

H O HF O H O HF OF O H HF O HF H O HF OHF H HF O H O H O HF H FHF

Byte 4

Byte 5

Byte 6

Byte 7

Transaction origin type:

X'01' None

X'02' Terminal

X'03"' Transient data
X'04' START

X'05' Terminal-related START

X'06' CICS business transaction services (BTS) scheduler
X'07' Transaction manager domain (XM)-run transaction
X'08' 3270 bridge

X'09' Sockets domain

X'0A' CICS Web support (CWS)

X'0B' Internet Inter-ORB Protocol (IIOP)

X'0C' Resource Recovery Services (RRS)

X'0D' LU 6.1 session

X'0OE' LU 6.2 (APPC) session

X'OF* MRO session

X'10' External Call Interface (ECI) session

X'11' [IOP domain request receiver

X'12' Request stream (RZ) instore transport

Transaction status information

Bits 0-5
Reserved

Bit 6 Task purged on an open TCB

Bit 7 Task abnormally terminated

Note: If bit 6 is set, the task has been purged while running on an
open TCB, and its transaction timing clocks have been left in an
unreliable state. Because of this, the clocks will be set to zero

when the record is written by the CICS Monitoring Facility
(CMF).

JVM information
Bit0 JVM marked unresettable

Bits 1-7
Reserved

Recovery manager information
Bit 0 Indoubt wait = no

Bit 1 Indoubt action = commit

106 CICS TS for z/0S: CICS Performance Guide

Bit 2 Recovery manager - UOW resolved with indoubt action
Bit 3 Recovery manager - Shunt

Bit4 Recovery manager - Unshunt

Bit 5 Recovery manager - Indoubt failure

Bit 6 Recovery manager - Resource owner failure

Bit 7 Reserved

Note: Bits 2 through 6 will be reset on a SYNCPOINT request when
the MNSYNC=YES option is specified.

166 (TYPE-C, 'TCLSNAME', 8 BYTES)
Transaction class name. This field is null if the transaction is not in a
TRANCLASS.

170 (TYPE-S, 'RMITIME', 8 BYTES)
The total elapsed time spent in the CICS Resource Manager Interface (RMI).
For more information, see [‘Clocks and time stamps” on page 70, and [‘Wait
[(suspend) times” on page 73] and [Figure 8 on page 78|

171 (TYPE-S, 'RMISUSP', 8 BYTES)
The total elapsed time the task was suspended by the CICS dispatcher while in
the CICS Resource Manager Interface (RMI). For more information, see |“Clock§|
and time stamps” on page 70, and ['Wait (suspend) times” on page 73,/and
Figure 8 on page 78

Note: The field is a subset of the task suspend time, SUSPTIME (014), field
and also the RMITIME (170) field.

181 (TYPE-S, 'WTEXWAIT', 8 BYTES)
The elapsed time that the user task waited for one or more ECBs, passed to
CICS by the user task using the EXEC CICS WAIT EXTERNAL ECBLIST
command, to be MVS POSTed. The user task can wait on one or more ECBs. If
it waits on more than one, it is dispatchable as soon as one of the ECBs is
posted. For more information, see [‘Clocks and time stamps” on page 70, and
['Wait (suspend) times” on page 73.|

Note: This field is a component of the task suspend time, (SUSPTIME) (014),
field.

182 (TYPE-S, 'WTCEWAIT', 8 BYTES)
The elapsed time the user task waited for:

» One or more ECBs, passed to CICS by the user task using the EXEC CICS
WAITCICS ECBLIST command, to be MVS POSTed. The user task can wait
on one or more ECBs. If it waits on more than one, it is dispatchable as soon
as one of the ECBs is posted.

» Completion of an event initiated by the same or by another user task. The
event would normally be the posting, at the expiration time, of a timer-event
control area provided in response to an EXEC CICS POST command. The
EXEC CICS WAIT EVENT command provides a method of directly giving up
control to some other task until the event being waited on is completed.

For more information, see [‘Clocks and time stamps” on page 70,/ and [‘Wai
|(suspend) times” on page 73]

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

Chapter 6. The CICS monitoring facility 107

183 (TYPE-S, 'ICDELAY', 8 BYTES)

The elapsed time the user task waited as a result of issuing either:

* An interval control EXEC CICS DELAY command for a specified time
interval, or

* An interval control EXEC CICS DELAY command for a specified time of day
to expire, or

* An interval control EXEC CICS RETRIEVE command with the WAIT option
specified. For more information, see [‘Clocks and time stamps” on page 70|
and [‘Wait (suspend) times” on page 73]

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

184 (TYPE-S, 'GVUPWAIT', 8 BYTES)
The elapsed time the user task waited as a result of giving up control to another
task. A user task can give up control in many ways. Some examples are
application programs that use one or more of the following EXEC CICS API or
SPI commands:

* Using the EXEC CICS SUSPEND command. This command causes the
issuing task to relinquish control to another task of higher or equal
dispatching priority. Control is returned to this task as soon as no other task
of a higher or equal priority is ready to be dispatched.

» Using the EXEC CICS CHANGE TASK PRIORITY command. This command
immediately changes the priority of the issuing task and causes the task to
give up control in order for it to be dispatched at its new priority. The task is
not redispatched until tasks of higher or equal priority, and that are also
dispatchable, have been dispatched.

* Using the EXEC CICS DELAY command with INTERVAL (0). This command
causes the issuing task to relinquish control to another task of higher or
equal dispatching priority. Control is returned to this task as soon as no other
task of a higher or equal priority is ready to be dispatched.

* Using the EXEC CICS POST command requesting notification that a
specified time has expired. This command causes the issuing task to
relinquish control to give CICS the opportunity to post the time-event control
area.

* Using the EXEC CICS PERFORM RESETTIME command to synchronize the
CICS date and time with the MVS system date and time of day.

* Using the EXEC CICS START TRANSID command with the ATTACH option.

For more information, see [‘Clocks and time stamps” on page 70,/ and [‘Wait
[(suspend) times” on page 73.|

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

190 (TYPE-C, 'RRMSURID', 16 BYTES)
RRMS/MVS unit-of-recovery ID (URID).

191 (TYPE-S, 'RRMSWAIT', 8 BYTES)
The elapsed time in which the user task waited indoubt using resource recovery
services for EXCI.

For more information, see [‘Clocks and time stamps” on page 70,/ and [‘Wait|
|(suspend) times” on page 73|

108 CICS TS for z/0S: CICS Performance Guide

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

192 (TYPE-S, 'RQRWAIT', 8 BYTES)
The elapsed time during which the request receiver user task CIRR (or user
specified transaction id) waited for any outstanding replies to be satisfied.

For more information, see [‘Clocks and time stamps” on page 70,/ and [‘Wait]
|(suspend) times” on page 73]

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

193 (TYPE-S, 'RQPWAIT', 8 BYTES)
The elapsed time during which the request processor user task CIRP waited for
any outstanding replies to be satisfied.

For more information, see [‘Clocks and time stamps” on page 70,/ and [‘Wai
[(suspend) times” on page 73]

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

194 (TYPE-C, 'OTSTID', 128 BYTES)
This field is the first 128 bytes of the Object Transaction Service (OTS)
Transaction ID (TID).

195 (TYPE-S, 'RUNTRWTT', 8 BYTES)
The elapsed time in which the user task waited for completion of a transaction
that executed as a result of the user task issuing a CICS BTS run process, or
run activity, request to execute a process, or activity, synchronously.

For more information, see [‘Clocks and time stamps” on page 70,/ and [‘Wait
[(suspend) times” on page 73]

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

247 (TYPE-S, 'DSCHMDLY', 8 BYTES)
The elapsed time in which the user task waited for redispatch after a CICS
Dispatcher change-TCB mode request was issued by or on behalf of the user
task. For example, a change-TCB mode request from a CICS L8 or S8 mode
TCB back to the CICS QR mode TCB might have to wait for the QR TCB
because another task is currently dispatched on the QR TCB.

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

249 (TYPE-S, 'QRMODDLY', 8 BYTES)
The elapsed time for which the user task waited for redispatch on the CICS QR
TCB. This is the aggregate of the wait times between each event completion.
and user-task redispatch.

Note: This field does not include the elapsed time spent waiting for the first
dispatch. The QRMODDLY field is a component of the task suspend
time, SUSPTIME (014), field, and also the redispatch wait, DISPWTT
(102), field.

250 (TYPE-S, 'MXTOTDLY', 8 BYTES)
The elapsed time in which the user task waited to obtain a CICS open TCB,
because the region had reached the limit set by the system parameter,

Chapter 6. The CICS monitoring facility 109

MAXOPENTCBS. This applies to L8 and L9 mode open TCBs only. L8 and L9
mode open TCBs are used by OPENAPI application programs, or task-related
user exit programs that have been enabled with the OPENAPI option, for
example, the CICS DB2 adaptor, when CICS connects to DB2 Version 6 or
later.

For more information, see [‘Clocks and time stamps” on page 70,/ and [‘Wait|
|(suspend) times” on page 73.|

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

251 (TYPE-A, 'TCBATTCT', 4 BYTES)
The number of CICS TCBs attached by or on behalf of the user task.

252 (TYPE-A, 'DSTCBHWM', 4 BYTES)
The peak number of CICS open TCBs (in TCB modes J8, J9, L8, L9, S8, X8
and X9) that have been concurrently allocated to the user task.

253 (TYPE-S, 'JVMTIME', 8 BYTES)
The total elapsed time spent in the JVM by the user task. See|['JVM elapsed
time and suspend time” on page 79 for more details.

254 (TYPE-S, 'JVMSUSP', 8 BYTES)
The elapsed time the user task was suspended by the CICS dispatcher while
running in the JVM.

Note: This field is a subset of the task suspend time, SUSPTIME (014), field.

255 (TYPE-S, 'QRDISPT', 8 BYTES)
The elapsed time for which the user task was dispatched on the CICS QR TCB.
For more information, see [‘Clocks and time stamps” on page 70|

256 (TYPE-S, 'QRCPUT', 8 BYTES)
The processor time for which the user task was dispatched on the CICS QR
TCB. For more information, see [‘Clocks and time stamps” on page 70.|

257 (TYPE-S, 'MSDISPT', 8 BYTES)
Elapsed time for which the user task was dispatched on each CICS TCB. The
CICS TCB modes are used as follows:
* RO and FO are always used.
* CO is used if SUBTSKS=1 is specified as a system initialization parameter.
» SZis used if FEPI is active.

* RP is used if the ONC/RPC or CICS Web Interface Feature is installed and
active.

* SO, SL, and SP are used if TCPIP=YES is specified as a system initialization
parameter. Mode SL is used by the CICS support for TCP/IP (TCP/IP
Service) Listener system transaction CSOL. Mode SO is used to process the
CICS support for TCP/IP socket requests issued by or on behalf of the user
task. Mode SP is the CICS support for TCP/IP sockets IPT task (Initial
Pthread TCB) and also owns all the SSL pthreads (S8 TCBs).

» D2 is used only in CICS Transaction Server for z/OS, Version 2 Release 2 or
later, when CICS is connected to DB2 Version 6 or later, to terminate DB2
protected threads.

¢ JM is used for the master JVM when the shared class cache is in use.

For more information, see [‘Clocks and time stamps” on page 70,

110 CICS TS for z/0S: CICS Performance Guide

258 (TYPE-S, 'MSCPUT', 8 BYTES)
The processor time for which the user task was dispatched on each CICS TCB.
The usage of each CICS TCB is shown in the description for field MSDISPT
(field id 257 in group DFHTASK). For more information, see [‘Clocks and time]
istamps” on page 70)

259 (TYPE-S, 'L8CPUT', 8 BYTES)
The processor time during which the user task was dispatched by the CICS
dispatcher domain on a CICS L8 mode TCB. When a transaction invokes an
OPENAPI application program defined with EXECKEY=CICS, or a task-related
user exit program that has been enabled with the OPENAPI option for example,
the CICS DB2 adaptor, when CICS connects to DB2 Version 6 or later, it is
allocated and uses a CICS L8 mode TCB. (An L8 mode TCB can also be
allocated if the OPENAPI program is defined with EXECKEY=USER, but the
storage protection facility is inactive.) Once a task has been allocated an L8
mode TCB, that same TCB remains associated with the task until the
transaction is detached. For more information on this field, see[‘Clocks and time]
istamps” on page 70)

260 (TYPE-S, 'J8CPUT', 8 BYTES)
The processor time during which the user task was dispatched by the CICS
dispatcher domain on a CICS J8 mode TCB. When a transaction invokes a
Java program defined with EXECKEY=CICS, that requires a JVM in CICS key,
it is allocated and uses a CICS J8 mode TCB. (A J8 mode TCB can also be
allocated if the Java program is defined with EXECKEY=USER, but the storage
protection facility is inactive.) Once a task has been allocated a J8 mode TCB,
that same TCB remains associated with the task until the Java program
completes. For more information, see[‘Clocks and time stamps” on page 70.|

261 (TYPE-S, 'S8CPUT', 8 BYTES)
The processor time during which the user task was dispatched by the CICS
dispatcher domain on a CICS S8 mode TCB. A transaction is allocated a CICS
S8 mode TCB when it is using the secure sockets layer (SSL) during client
certificate negotiation. The S8 mode TCB remains associated with the same
task for the life of the SSL request. For more information, see [‘Clocks and time|
istamps” on page 70|

262 (TYPE-S,'KY8DISPT',8 BYTES)
The total elapsed time during which the user task was dispatched by the CICS
dispatcher on a CICS Key 8 mode TCB:

* An L8 mode TCB is allocated when a transaction invokes an OPENAPI
application program defined with EXECKEY=CICS, or a task-related user exit
program that has been enabled with the OPENAPI option. (This includes, for
example, the CICS DB2 adaptor, when CICS connects to DB2 Version 6 or
later.) The TCB remains associated with the task until the transaction is
detached.

* A J8 mode TCB is allocated when a transaction invokes a Java program
defined with EXECKEY=CICS, that requires a JVM in CICS key. (A J8 mode
TCB can also be allocated if the Java program is defined with
EXECKEY=USER, but the storage protection facility is inactive.) The TCB
remains associated with the task until the Java program completes.

* An S8 mode TCB is allocated when a transaction is using the secure sockets
layer (SSL) during client certificate negotiation. The S8 mode TCB remains
associated with the same task for the life of the SSL request.

Chapter 6. The CICS monitoring facility 111

* An X8 mode TCB is allocated when a transaction invokes a C or C++
program that was compiled with the XPLINK option, and that is defined with
EXECKEY=CICS. The TCB remains associated with the task until the
program ends.

Note: This field is a component of the task dispatch time field, USRDISPT
(field id 007 in group DFHTASK).

263 (TYPE-S, 'KY8CPUT',8 BYTES)
The processor time during which the user task was dispatched by the CICS
dispatcher on a CICS Key 8 mode TCB. The usage of the CICS Key 8 mode
TCBs is shown in the description for field KY8DISPT (field id 262 in group
DFHTASK).

Note: This field is a component of the task CPU time field, USRCPUT (field id
008 in group DFHTASK).

264 (TYPE-S, 'KY9DISPT', 8 BYTES)
The total elapsed time during which the user task was dispatched by the CICS
dispatcher on a CICS Key 9 mode TCB:

* A J9 mode TCB is allocated when a transaction invokes a Java program
defined with EXECKEY=USER, that requires a JVM in user key. (If the
storage protection facility is inactive, the transaction is allocated a J8 mode
TCB instead of a J9 mode TCB.) The TCB remains associated with the task
until the Java program completes.

* An L9 mode TCB is allocated when a transaction invokes an OPENAPI
application program defined with EXECKEY=USER. The TCB remains
associated with the task until the transaction is detached.

* An X9 mode TCB is allocated when a transaction invokes a C or C++
program that was compiled with the XPLINK option, and that is defined with
EXECKEY=USER. The TCB remains associated with the task until the
program ends.

Note: This field is a component of the task dispatch time field, USRDISPT
(field id 007 in group DFHTASK).

265 (TYPE-S, 'KY9CPUT', 8 BYTES)
The processor time during which the user task was dispatched by the CICS
dispatcher on a CICS Key 9 mode TCB. The usage of the CICS Key 9 mode
TCBs is shown in the description for field KY9DISPT (field id 264 in group
DFHTASK).

Note: This field is a component of the task CPU time field, USRCPUT (field id
008 in group DFHTASK).

266 (TYPE-S, 'L9CPUT', 8 BYTES)
The processor time during which the user task was dispatched by the CICS
dispatcher domain on a CICS L9 mode TCB. When a transaction invokes an
OPENAPI application program defined with EXECKEY=USER, it is allocated
and uses a CICS L9 mode TCB. (If the storage protection facility is inactive, an
L8 mode TCB is used instead of an L9 mode TCB.) Once a task has been
allocated an L9 mode TCB, that same TCB remains associated with the task
until the transaction is detached.

Note: This field is a component of the total task CPU time field, USRCPUT

(field id 008 in group DFHTASK), and the task key 9 CPU time field,
KY9CPUT (field id 265 in group DFHTASK).

112 CICS TS for z/0S: CICS Performance Guide

267 (TYPE-S, 'J9CPUT', 8 BYTES)
The processor time during which the user task was dispatched by the CICS
dispatcher domain on a CICS J9 mode TCB. When a transaction invokes a
Java program defined with EXECKEY=USER, that requires a JVM in user key,
it is allocated and uses a CICS J9 mode TCB. (If the storage protection facility
is inactive, a J8 mode TCB is used instead of a J9 mode TCB.) Once a task
has been allocated a J9 mode TCB, that same TCB remains associated with
the task until the Java program completes.

268 (TYPE-S, 'DSTCBMWT', 8 BYTES)
The elapsed time which the user task spent in TCB mismatch waits, that is,
waiting because there was no TCB available matching the request, but there
was at least one non-matching free TCB. For transactions that invoke a Java
program to run in a JVM, this shows the time spent waiting for a TCB of the
correct mode (J8 or J9) and JVM profile. [Java Applications in CICS|has more
information about how CICS manages TCB mismatch waits for these
transactions.

269 (TYPE-S, 'RODISPT', 8 BYTES)
The elapsed time during which the user task was dispatched by the CICS
dispatcher on the CICS RO mode TCB. The CICS RO mode TCB is used for
opening and closing CICS data sets, loading programs, issuing RACF calls, and
other functions.

Note: This field is a component of the task dispatch time field, USRDISPT
(group name: DFHTASK, field id: 007) and the task miscellaneous TCB
dispatch time field, MSDISPT (group name: DFHTASK, field id: 257).

270 (TYPE-S, 'ROCPUT', 8 BYTES)
The processor time during which the user task was dispatched by the CICS
dispatcher on the CICS RO mode TCB. The CICS RO mode TCB is used for
opening and closing CICS data sets, loading programs, issuing RACF calls, and
other functions.

Note: This field is a component of the task CPU time field, USRCPUT (group
name: DFHTASK, field id: 008) and the task miscellaneous TCB CPU
time field, MSCPUT (group name: DFHTASK, field id: 258).

271 (TYPE-S, 'X8CPUT', 8 BYTES)
The processor time during which the user task was dispatched by the CICS
dispatcher domain on a CICS X8 mode TCB. When a transaction invokes a C
or C++ program that was compiled with the XPLINK option, and that is defined
with EXECKEY=CICS, it is allocated and uses a CICS X8 mode TCB. (An X8
mode TCB can also be allocated if the program is defined with
EXECKEY=USER, but the storage protection facility is inactive.) Once a task
has been allocated an X8 mode TCB, that same TCB remains associated with
the task until the program completes.

Note: This field is a component of the total task CPU time field, USRCPUT
(field id 008 in group DFHTASK), and the task key 8 CPU time field,
KY8CPUT (field id 263 in group DFHTASK).

272 (TYPE-S, 'X9CPUT', 8 BYTES)
The processor time during which the user task was dispatched by the CICS
dispatcher domain on a CICS X9 mode TCB. When a transaction invokes a C
or C++ program that was compiled with the XPLINK option, and that is defined
with EXECKEY=USER, it is allocated and uses a CICS X9 mode TCB. (If the
storage protection facility is inactive, an X8 mode TCB is used instead of an X9

Chapter 6. The CICS monitoring facility 113

mode TCB.) Once a task has been allocated an X9 mode TCB, that same TCB
remains associated with the task until the program completes.

Note: This field is a component of the total task CPU time field, USRCPUT
(field id 008 in group DFHTASK), and the task key 9 CPU time field,
KY9CPUT (field id 265 in group DFHTASK).

273 (TYPE-S, 'JVMITIME', 8 BYTES)
The elapsed time spent initializing the JVM environment. For more information,
see [‘Clocks and time stamps” on page 70)and ['JVM elapsed time and suspend|
time” on page 79,

275 (TYPE-S, 'JVMRTIME', 8 BYTES)
The elapsed time spent resetting the JVM environment to its initial state. For
more information, see[‘Clocks and time stamps” on page 70.|

277 (TYPE-S, 'MAXJTDLY', 8 BYTES)
The elapsed time in which the user task waited to obtain a CICS JVM TCB (J8
or J9 mode), because the CICS system had reached the limit set by the system
parameter, MAXJVMTCBS. The J8 and J9 mode open TCBs are used
exclusively by Java programs defined with JVM(YES).

For more information, see [‘Wait (suspend) times” on page 73.|

Note: This field is a component of the task suspend time field, SUSPTIME
(group name: DFHTASK, field id: 014).

279 (TYPE-S, 'DSMMSCWT', 8 BYTES)
The elapsed time which the user task spent waiting because no TCB pwas
available, and none could be created because of MVS storage constraints. For
more information about MVS storage constraints, see [‘Dealing with warnings|
fabout MVS storage constraints” on page 324.|

Note: This field is a component of the task suspend time field, SUSPTIME
(group name: DFHTASK, field id: 014).

281 (TYPE-S, 'MAXSTDLY', 8 BYTES)
The elapsed time in which the user task waited to obtain a CICS SSL TCB (S8
mode), because the CICS system had reached the limit set by the system
initialization parameter MAXSSLTCBS. The S8 mode open TCBs are used
exclusively by secure sockets layer (SSL) pthread requests issued by or on
behalf of a user task. For more information, see [‘Wait (suspend) times” on page|

Note: This field is a component of the task suspend time field, SUSPTIME
(group name: DFHTASK, field id: 014).

282 (TYPE-S, 'MAXXTDLY', 8 BYTES)
The elapsed time in which the user task waited to obtain a CICS XP TCB (X8
or X9 mode), because the CICS system had reached the limit set by the system
parameter, MAXXPTCBS. The X8 and X9 mode open TCBs are used
exclusively by C and C++ programs that were compiled with the XPLINK option.
For more information, see [‘Wait (suspend) times” on page 73

Note: This field is a component of the task suspend time field, SUSPTIME
(group name: DFHTASK, field id: 014).

114 CICS TS for z/0S: CICS Performance Guide

285 (TYPE-S, 'PTPWAIT', 8 BYTES)
The elapsed time in which the user task waited for the 3270 bridge partner
transaction to complete. For more information, see [‘Wait (suspend) times” on

Note: This field is a component of the task suspend time field, SUSPTIME
(group name: DFHTASK, field id: 014).

345 (TYPE-A, 'ICSTACDL', 4 BYTES)
Total length, in bytes, of the data in the containers of all the locally-executed
START CHANNEL requests issued by the user task. This total includes the
length of any headers to the data.

346 (TYPE-A, '"ICSTRCCT', 4 BYTES)
Total number of interval control START CHANNEL requests, to be executed on
remote systems, issued by the user task.

347 (TYPE-A, 'ICSTRCDL', 4 BYTES)
Total length, in bytes, of the data in the containers of all the remotely-executed
START CHANNEL requests issued by the user task. This total includes the
length of any headers to the data.

| End of Product-Sensitive programming interface 4|

Performance data in group DFHTEMP

| Product-Sensitive programming interface |

For a breakdown by individual temporary storage queue of the information provided
in group DFHTEMP, you can request transaction resource monitoring.

See [‘Transaction resource class data” on page 126|for details.

Group DFHTEMP contains the following performance data:

011 (TYPE-S, 'TSIOWTT', 8 BYTES)
Elapsed time for which the user task waited for VSAM temporary storage 1/O.
For more information see [‘Clocks and time stamps” on page 70| and[“Wait
[(suspend) times” on page 73]

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

044 (TYPE-A, 'TSGETCT', 4 BYTES)
Number of temporary-storage GET requests issued by the user task.

046 (TYPE-A, 'TSPUTACT', 4 BYTES)
Number of PUT requests to auxiliary temporary storage issued by the user task.

047 (TYPE-A, 'TSPUTMCT', 4 BYTES)
Number of PUT requests to main temporary storage issued by the user task.

092 (TYPE-A, 'TSTOTCT', 4 BYTES)
Total number of temporary storage requests issued by the user task. This field
is the sum of the temporary storage READQ (TSGETCT), WRITEQ AUX
(TSPUTACT), WRITEQ MAIN (TSPUTMCT), and DELETEQ requests issued by
the user task.

Chapter 6. The CICS monitoring facility 115

178 (TYPE-S, 'TSSHWAIT', 8 BYTES)
Elapsed time that the user task waited for an asynchronous shared temporary
storage request to a temporary storage data server to complete. For more
information, see[‘Clocks and time stamps” on page 70,/ and [‘Wait (suspend)|
times” on page 73.|

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

| End of Product-Sensitive programming interface 4|

Performance data in group DFHTERM

| Product-Sensitive programming interface

Group DFHTERM contains the following performance data:

002 (TYPE-C, 'TERM', 4 BYTES)
Terminal or session identification. This field is null if the task is not associated
with a terminal or session.

009 (TYPE-S, 'TCIOWTT', 8 BYTES)
Elapsed time for which the user task waited for input from the terminal operator,
after issuing a RECEIVE request. For more information, see [‘Clocks and time]
lstamps” on page 70, and[‘Wait (suspend) times” on page 73.|

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

034 (TYPE-A, 'TCMSGIN1', 4 BYTES)
Number of messages received from the task’s principal terminal facility,
including LUTYPEG6.1 and LUTYPE6.2 (APPC) but not MRO (IRC).

035 (TYPE-A, 'TCMSGOUl', 4 BYTES)
Number of messages sent to the task’s principal terminal facility, including
LUTYPEG6.1 and LUTYPEG6.2 (APPC) but not MRO (IRC).

067 (TYPE-A, 'TCMSGIN2', 4 BYTES)
Number of messages received from the LUTYPEG.1 alternate terminal facilities
by the user task.

068 (TYPE-A, 'TCMSGOU2', 4 BYTES)
Number of messages sent to the LUTYPESG.1 alternate terminal facilities by the
user task.

069 (TYPE-A, 'TCALLOCT', 4 BYTES)
Number of TCTTE ALLOCATE requests issued by the user task for LUTYPE6.2
(APPC), LUTYPES6.1, and IRC sessions.

083 (TYPE-A, 'TCCHRIN1', 4 BYTES)
Number of characters received from the task’s principal terminal facility,
including LUTYPEG6.1 and LUTYPE6.2 (APPC) but not MRO (IRC).

084 (TYPE-A, 'TCCHROUL1', 4 BYTES)
Number of characters sent to the task’s principal terminal facility, including
LUTYPE®6.1 and LUTYPEG6.2 (APPC) but not MRO (IRC).

085 (TYPE-A, 'TCCHRIN2', 4 BYTES)
Number of characters received from the LUTYPEG6.1 alternate terminal facilities
by the user task. (Not applicable to ISC APPC.)

116 CICS TS for z/0S: CICS Performance Guide

086 (TYPE-A, 'TCCHROU2', 4 BYTES)
Number of characters sent to the LUTYPE®G.1 alternate terminal facilities by the
user task. (Not applicable to ISC APPC.)

100 (TYPE-S, 'IRIOWTT', 8 BYTES)
Elapsed time for which the user task waited for control at this end of an MRO
link. For more information, see [‘Clocks and time stamps” on page 70, and[*Wait
[(suspend) times” on page 73)

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

111 (TYPE-C, 'LUNAME', 8 BYTES)
VTAM logical unit name (if available) of the terminal associated with this
transaction. If the task is executing in an application-owning or file-owning
region, the LUNAME is the generic applid of the originating connection for
MRO, LUTYPE®6.1, and LUTYPE6.2 (APPC). The LUNAME is blank if the
originating connection is an external CICS interface (EXCI).

133 (TYPE-S, 'LUGIWTT', 8 BYTES)
The elapsed time for which the user task waited for I/0O on a LUTYPEG6.1
connection or session. This time also includes the waits incurred for
conversations across LUTYPEG6.1 connections, but not the waits incurred due to
LUTYPES6.1 syncpoint flows. For more information see|“Clocks and time]
istamps” on page 70, and[‘Wait (suspend) times” on page 73.|

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

134 (TYPE-S, 'LU62WTT', 8 BYTES)
The elapsed time for which the user task waited for 1/0 on a LUTYPE6.2
(APPC) connection or session. This time also includes the waits incurred for
conversations across LUTYPE6.2 (APPC) connections, but not the waits
incurred due to LUTYPE6.2 (APPC) syncpoint flows. For more information, see
[‘Clocks and time stamps” on page 70,|and [‘Wait (suspend) times” on page 73

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

135 (TYPE-A, 'TCM62IN2', 4 BYTES)

Number of messages received from the alternate facility by the user task for
LUTYPE®6.2 (APPC) sessions.

136 (TYPE-A, 'TCM620U2', 4 BYTES)
Number of messages sent to the alternate facility by the user task for
LUTYPE6.2 (APPC) sessions.

137 (TYPE-A, 'TCC62IN2', 4 BYTES)

Number of characters received from the alternate facility by the user task for
LUTYPEG6.2 (APPC) sessions.

138 (TYPE-A, 'TCC620U2', 4 BYTES)
Number of characters sent to the alternate facility by the user task for
LUTYPE6.2 (APPC) sessions.

165 (TYPE-A, 'TERMINFO', 4 BYTES)
Terminal or session information for this task’s principal facility as identified in the

‘TERM field id 002. This field is null if the task is not associated with a terminal
or session facility.

Chapter 6. The CICS monitoring facility 117

Byte 0
Identifies whether this task is associated with a terminal or session.
This field can be set to one of the following values:

X'00' None
X'01' Terminal
X'02' Session

Byte 1
If the principal facility for this task is a session (Byte 0 = x'02"), this field
identifies the session type. This field can be set to one of the following

values:

X'00' None
X'01' IRC
X'02' [IRC XM
X'03' IRC XCF
X'04' LU61

X'05' LU62 Single
X'06' LUG62 Parallel

Byte 2
Identifies the access method defined for the terminal id or session id in
field TERM. This field can be set to one of the following values:

X'00' None

X'01' VTAM

X'02'" BTAM (no longer supported)
X'03' BSAM

X'04' TCAM/DCB (supported for remote terminals only)
X'05' TCAM/ACB (no longer supported)
X'06' BGAM
X'07" CONSOLE
Byte 3

Identifies the terminal or session type for the terminal id or session id in
TERM.

* See RDO Typeterm

For a list of the typeterm definitions, see fthe CICS Applicatior]
[Programming Reference]

169 (TYPE-C, 'TERMCNNM', 4 BYTES)
Terminal session connection name. If the terminal facility associated with this
transaction is a session, this field is the name of the owning connection (sysid).

A terminal facility can be identified as a session by using byte 0 of the terminal
information, TERMINFO (165), field. If the value is x'02' the terminal facility is a
session.

197 (TYPE-C, 'NETID', 8 BYTES)
NETID if a network qualified name has been received from VTAM. If it is a
VTAM resource and the network qualified name has not yet been received,
NETID is 8 blanks. In all other cases it is nulls.

198 TYPE-C, 'RLUNAME', 8 BYTES
Real network name if a network qualified name has been received from VTAM.
In all other cases this field will be the same as LUNAME (field id 111). For
non-VTAM resources it is nulls.

| End of Product-Sensitive programming interface 4|

118 CICS TS for z/0S: CICS Performance Guide

Performance data in group DFHWEBB

| Product-Sensitive programming interface

Group DFHWEBB contains the following performance data:

224 (TYPE-A, 'WBREADCT', 4 BYTES)
The number of CICS Web support READ HTTPHEADER and FORMFIELD
requests issued by the user task.

225 (TYPE-A, 'WBWRITCT', 4 BYTES)
The number of CICS Web support WRITE HTTPHEADER requests issued by
the user task.

231 (TYPE-A, 'WBRCVCT', 4 BYTES)
The number of CICS Web interface RECEIVE requests issued by the user task.

232 (TYPE-A, 'WBCHRIN', 4 BYTES)
The number of bytes received by the CICS Web interface RECEIVE requests
issued by the user task.

233 (TYPE-A, 'WBSENDCT', 4 BYTES)
The number of CICS Web interface SEND requests issued by the user task.

234 (TYPE-A, 'WBCHROUT', 4 BYTES)
The number of bytes sent by the CICS Web interface SEND requests issued by
the user task.

235 (TYPE-A, 'WBTOTWCT', 4 BYTES)
The total number of CICS Web interface requests issued by the user task.

236 (TYPE-A, 'WBREPRCT', 4 BYTES)
The number of reads from the repository in temporary storage issued by the
user task.

237 (TYPE-A, 'WBREPWCT', 4 BYTES)
The number of writes to the repository in temporary storage issued by the user
task.

238 (TYPE-A, 'WBEXTRCT', 4 BYTES)
The number of CICS Web support EXTRACT requests issued by the user task.

239 (TYPE-A, 'WBBRWCT', 4 BYTES)
The number of CICS Web support BROWSE HTTPHEADER and FORMFIELD
requests (STARTBROWSE, READNEXT, and ENDBROWSE) issued by the
user task.

331 (TYPE-A, 'WBREDOCT', 4 BYTES)
The number of CICS Web support READ HTTPHEADER requests issued by
the user task when CICS is an HTTP client.

332 (TYPE-A, 'WBWRTOCT', 4 BYTES)
The number of CICS Web support WRITE HTTPHEADER requests issued by
the user task when CICS is an HTTP client.

333 (TYPE-A, 'WBRCVIN1', 4 BYTES)
The number of CICS Web support RECEIVE and CONVERSE requests issued
by the user task when CICS is an HTTP client.

334 (TYPE-A, 'WBCHRIN1', 4 BYTES)
The number of bytes received by the CICS Web support RECEIVE and
CONVERSE requests issued by the user task when CICS is an HTTP client.
This includes the HTTP headers for the response.

Chapter 6. The CICS monitoring facility 119

335 (TYPE-A, 'WBSNDOU1l', 4 BYTES)
The number of CICS Web support SEND and CONVERSE requests issued by
the user task when CICS is an HTTP client.

336 (TYPE-A, 'WBCHROU1', 4 BYTES)
The number of bytes sent by the CICS Web support SEND and CONVERSE
requests issued by the user task when CICS is an HTTP client. This includes
the HTTP headers for the request.

337 (TYPE-A, 'WBPARSCT', 4 BYTES)
The number of CICS Web support PARSE URL requests issued by the user
task.

338 (TYPE-A, 'WBBRWOCT', 4 BYTES)
The number of CICS Web support BROWSE HTTPHEADER requests
(STARTBROWSE, READNEXT, and ENDBROWSE) issued by the user task
when CICS is an HTTP client.

340 (TYPE-A, 'WBIWBSCT', 4 BYTES)
The number of CICS INVOKE WEBSERVICE requests issued by the user task.

341 (TYPE-A, 'WBREPRDL', 4 BYTES)
The total length, in bytes, of the data read from the repository in temporary
storage by the user task.

342 (TYPE-A, 'WBREPWDL', 4 BYTES)
The total length, in bytes, of the data written to the repository in temporary
storage by the user task.

Note: When requests are made using the WEB CONVERSE command, this
increments both the Send and Receive request counts (WBSNDOU1 and
WBRCVIN1) and the counts of characters sent and received (WBCHRIN1
and WBCHROU1).

| End of Product-Sensitive programming interface 4|

Exception class data

| Product-sensitive programming interface |

Exception records are produced after each of the following conditions encountered
by a transaction has been resolved:

» Wait for storage in the CDSA

» Wait for storage in the UDSA

» Wait for storage in the SDSA

» Wait for storage in the RDSA

* Wait for storage in the ECDSA

* Wait for storage in the EUDSA

* Wait for storage in the ESDSA

* Wait for storage in the ERDSA

» Wait for auxiliary temporary storage

» Wait for auxiliary temporary storage string
» Wait for auxiliary temporary storage buffer
» Wait for coupling facility data tables locking (request) slot

120 CICS TS for z/OS: CICS Performance Guide

» Wait for coupling facility data tables non-locking (request) slot (With coupling
facility data tables each CICS has a number of slots available for requests in the
CF data table. When all available slots are in use, any further request must wait.)

* Wait for file buffer
* Wait for file string

* Wait for LSRPOOL buffer
* Wait for LSRPOOL string

These records are fixed format. The format of these exception records is as follows:

MNEXCDS

EXCMNTRN
EXCMNTER
EXCMNUSR
EXCMNTST
EXCMNSTA
EXCMNSTO
EXCMNTNO
EXCMNTPR

EXCMNLUN

EXCMNEXN
EXCMNRTY
EXCMNRID
EXCMNTYP
EXCMNWT

EXCMNBWT
EXCMNSWT

EXCMNTCN
EXCMNSRV
EXCMNRPT
EXCMNNPX
EXCMNNSX
EXCMNTRF
EXCMNFCN
EXCMNCPN
EXCMNBTR
EXCMNURI
EXCMNRIL
EXCMNRIX
EXCMNNID
EXCMNRLU

*

DSECT
DS
DS
DS
DS
DS
DS

CL4
XL4
CL8
CL4
XL8
XL8
PL4
XL4
CL4
CL8
CL4
XL4
CL8
CL8
XL2
X'0001'
X'0002'
X'0003'
CL2
CL8
CL8
CL8
CL20
XL8
XL8
CL4
CL8
CL4
XL16
F
XL256
CL8
CL8

TRANSACTION IDENTIFICATION
TERMINAL IDENTIFICATION
USER IDENTIFICATION
TRANSACTION START TYPE
EXCEPTION START TIME
EXCEPTION STOP TIME
TRANSACTION NUMBER
TRANSACTION PRIORITY
RESERVED
LUNAME
RESERVED
EXCEPTION NUMBER
EXCEPTION RESOURCE TYPE
EXCEPTION RESOURCE ID
EXCEPTION TYPE

WAIT

BUFFER WAIT

STRING WAIT
RESERVED
TRANSACTION CLASS NAME
SERVICE CLASS NAME
REPORT CLASS NAME
NETWORK UNIT_OF_WORK PREFIX
NETWORK UNIT_OF WORK SUFFIX
TRANSACTION FLAGS
TRANSACTION FACILITY NAME
CURRENT PROGRAM NAME
BRIDGE TRANSACTION ID
MVS/RRMS Unit of Recovery Id
EXCEPTION RESOURCE ID LENGTH
EXCEPTION RESOURCE ID (EXTENDED)
NETWORK ID
REAL LUNAME

END OF EXCEPTION RECORD ...

Exception data field descriptions

Product-sensitive programming interface

EXCMNTRN (TYPE-C, 4 BYTES)
Transaction identification.

EXCMNTER (TYPE-C, 4 BYTES)

End of Product-sensitive programming interface 4,

Terminal identification. This field is null if the task is not associated with a

terminal or session.

EXCMNUSR (TYPE-C, 8 BYTES)

User identification at task creation. This can also be the remote user identifier

Chapter 6. The CICS monitoring facility 121

for a task created as the result of receiving an ATTACH request across an MRO
or APPC link with attach-time security enabled.

EXCMNTST (TYPE-C, 4 BYTES)
Transaction start type. The low-order byte (0 and 1) is set to:
"TO" Attached from terminal input
sk Attached by automatic transaction initiation (ATI) without data
"SD" Attached by automatic transaction initiation (ATI) with data
"QD" Attached by transient data trigger level
"y Attached by user request
“TP" Attached from terminal TCTTE transaction ID
"SzZ" Attached by Front End Programming Interface (FEPI)

EXCMNSTA (TYPE-T, 8 BYTES)
Start time of the exception.

EXCMNSTO (TYPE-T, 8 BYTES)
Finish time of the exception.

Note: The performance class exception wait time field, EXWTTIME (103), is a
calculation based on subtracting the start time of the exception
(EXCMNSTA) from the finish time of the exception (EXCMNSTO).

EXCMNTNO (TYPE-P, 4 BYTES)
Transaction identification number.

EXCMNTPR (TYPE-C, 4 BYTES)
Transaction priority when monitoring was initialized for the task (low-order byte).

EXCMNLUN (TYPE-C, 4 BYTES)
VTAM logical unit name (if available) of the terminal associated with this
transaction. This field is nulls if the task is not associated with a terminal.

EXCMNEXN (TYPE-A, 4 BYTES)
Exception sequence number for this task.

EXCMNRTY (TYPE-C, 8 BYTES)
Exception resource type. The possible values for EXCMNRTY are shown in
[Table 7 on page 126}

EXCMNRID (TYPE-C, 8 BYTES)
Exception resource identification. The possible values for EXCMNRID are
shown in [Table 7 on page 126}

EXCMNTYP (TYPE-A, 2 BYTES)
Exception type. This field can be set to one of the following values:
X'0001'
Exception due to a wait (EXCMNWT)
X'0002'
Exception due to a buffer wait (EXCMNBWT)
X'0003'
Exception due to a string wait (EXCMNSWT)

EXCMNTCN (TYPE-C, 8 BYTES)
Transaction class name. This field is null if the transaction is not in a transaction
class.

EXCMNSRV (TYPE-C, 8 BYTES)
MVS Workload Manager Service Class name for this transaction. This field is
null if there are no transaction classification rules defined for CICS subsystems
in the active MVS Workload Manager (WLM) service policy, or if the transaction
was WLM-classified in another CICS region.

122 CICS TS for /OS: CICS Performance Guide

EXCMNRPT (TYPE-C, 8 BYTES)
MVS Workload Manager Report Class name for this transaction. This field is
null if there are no transaction classification rules defined for CICS subsystems
in the active MVS Workload Manager (WLM) service policy, or if the transaction
was WLM-classified in another CICS region.

EXCMNNPX (TYPE-C, 20 BYTES)
Fully qualified name by which the originating system is known to the VTAM
network. This name is assigned at attach time using either the NETNAME
derived from the TCT (when the task is attached to a local terminal), or the
NETNAME passed as part of an ISC APPC or IRC attach header. At least three
passing bytes (X'00') are present at the right end of the name.

If the originating terminal is a VTAM device across an ISC APPC or IRC link,
the NETNAME is the networkid.LUname. If the terminal is non-VTAM, the
NETNAME is networkid.generic_applid

All originating information passed as part of an ISC LUTYPE®G.1 attach header
has the same format as the non-VTAM terminal originators above.

When the originator is communicating over an external CICS interface (EXCI)
session, the name is a concatenation of:

'DFHEXCIU | . | MvS Id | Address space Id (ASID)'
8 bytes | 1 byte | 4 bytes | 4 bytes

derived from the originating system. That is, the name is a 17-byte LU name
consisting of:

* An 8-byte eye-catcher set to 'DFHEXCIU'".

* A 1-byte field containing a period (.).

* A 4-byte field containing the MVSID, in characters, under which the client
program is running.

* A 4-byte field containing the address space ID (ASID) in which the client

program is running. This field contains the 4-character EBCDIC
representation of the 2-byte hex address space ID.

EXCMNNSX (TYPE-C, 8 BYTES)
Name by which the unit of work is known within the originating system. This last
name is assigned at attach time using either an STCK-derived token (when the
task is attached to a local terminal) or the unit of work ID is passed as part of
an ISC APPC or IRC attach header.

The first 6 bytes of this field are a binary value derived from the clock of the
originating system and wrapping round at intervals of several months. The last
two bytes of this field are for the period count. These may change during the
life of the task as a result of syncpoint activity.

Note: When using MRO or ISC, the EXCMNNSX field must be combined with
the EXCMNNPX field to uniquely identify a task, because the
EXCMNNSX field is unique only to the originating CICS system.

EXCMNTRF (TYPE-C, 8 BYTES)
Transaction flags—a string of 64 bits used for signaling transaction definition
and status information:

Byte 0
Transaction facility identification

Bit 0 Transaction facility name = none

Bit1 Transaction facility name = terminal

Chapter 6. The CICS monitoring facility 123

Bit 2 Transaction facility name = surrogate
Bit 3 Transaction facility name = destination
Bit 4 Transaction facility name = 3270 bridge
Bits 5-7
Reserved
Byte 1
Transaction identification information
Bit 0 System transaction
Bit1 Mirror transaction
Bit2 DPL mirror transaction
Bit3 ONC RPC alias transaction
Bit4 WEB alias transaction
Bit 5 3270 bridge transaction
Bit 6 Reserved
Bit 7 CICS BTS Run transaction

Byte 2

MVS Workload Manager request (transaction) completion information

Bit 0 Report the total response time (begin-to-end phase) for
completed work request (transaction)

Bit 1 Notify that the entire execution phase of the work request is
complete

Bit 2 Notify that a subset of the execution phase of the work request
is complete

Bits 3-7

Byte 3

Reserved

Transaction definition information

Bit 0 Taskdataloc = below
Bit1 Taskdatakey = cics
Bit 2 Isolate = no
Bit 3 Dynamic = yes
Bits 4- 7
Reserved
Byte 4
Transaction origin type
Byte 5
Transaction status information
Bits 0-5
Reserved
Bit 6 Task purged on an open TCB

Bit 7

Task abnormally terminated

124 CICS TS for z/OS: CICS Performance Guide

Note: If bit 6 is set, the task has been purged while running on an
open TCB, and its transaction timing clocks have been left in an
unreliable state. Because of this, the clocks will be set to zero
when the record is written by the CICS Monitoring Facility
(CMF).

Byte 6
JVM information

Bit0 JVM marked unresettable

Bits 1-7
Reserved

Byte 7
Recovery manager information

Bit 0 Indoubt wait = no

Bit 1 Indoubt action = commit

Bit 2 Recovery manager - UOW resolved with indoubt action
Bit 3 Recovery manager - shunt

Bit 4 Recovery manager - unshunt

Bit 5 Recovery manager - indoubt failure

Bit 6 Recovery manager - resource owner failure

Bit 7 Reserved

Note: Bits 2 through 6 will be reset on a SYNCPOINT request when
the MSYNC=YES option is specified.

EXCMNFCN (TYPE-C, 4 BYTES)
Transaction facility name. This field is null if the transaction is not associated
with a facility. The transaction facility type (if any) can be identified by using
byte 0 of the transaction flags field, EXCMNTRF.

EXCMNCPN (TYPE-C, 8 BYTES)
The name of the currently running program for this user task when the
exception condition occurred.

EXCMNBTR (TYPE-C, 4 BYTES)
3270 Bridge transaction identification.

EXCMNURI (TYPE-C, 16 BYTES)
RRMS/MVS unit-of-recovery ID (URID)

EXCMNRIL (TYPE-A, 4 BYTES)
Exception resource ID length.

EXCMNRIX (TYPE-C, 256 BYTES)
Exception resource ID (extended).

EXCMNNID (TYPE-C, 8 BYTES)
NETID if a network qualified name has been received from VTAM. If it is a
VTAM resource and the network qualified name has not yet been received,
NETID is 8 blanks. In all other cases it is nulls.

EXCMNRLU (TYPE-C, 8 BYTES)
Real network name if a network qualified name has been received from VTAM.
In all other cases this field will be the same as LUNAME (field id 111). For
non-VTAM resources it is nulls.

Chapter 6. The CICS monitoring facility 125

H o H H H*

The following table shows the value and relationships of the fields EXCMNTYP,
EXCMNRTY, and EXCMNRID.

Table 7. Possible values of EXCMNTYP, EXCMNRTY, and EXCMNRID. The relationship between exception type,
resource type, and resource identification.

EXCMNTYP EXCMNRTY EXCMNRID MEANING

Exception type Resource type Resource ID
EXCMNWT ‘CFDTLRSW poolname Wait for CF data tables locking request slot
EXCMNWT ‘CFDTPOOL poolname Wait for CF data tables non-locking request slot
EXCMNWT ‘STORAGFE’ ‘UDSA Wait for UDSA storage
EXCMNWT ‘STORAGFE’ ‘EUDSA Wait for EUDSA storage
EXCMNWT ‘STORAGFE’ ‘CDSA Wait for CDSA storage
EXCMNWT ‘STORAGFE’ ‘ECDSA Wait for ECDSA storage
EXCMNWT ‘STORAGFE’ ‘SDSA’ Wait for SDSA storage
EXCMNWT ‘STORAGFE’ ‘ESDSA Wait for ESDSA storage
EXCMNWT ‘STORAGFE’ ‘RDSA Wait for RDSA storage
EXCMNWT ‘STORAGFE’ ‘ERDSA’ Wait for ERDSA storage
EXCMNWT ‘TEMPSTOR’ TS Qname Wait for temporary storage
EXCMNSWT ‘FILE’ filename Wait for string associated with file
EXCMNSWT ‘LSRPOOL’ filename Wait for string associated with LSRPOOL
EXCMNSWT ‘TEMPSTOR” TS Qname Wait for string associated with DFHTEMP
EXCMNBWT ‘LSRPOOL’ LSRPOOL Wait for buffer associated with LSRPOOL
EXCMNBWT ‘TEMPSTOR’ TS Qname Wait for buffer associated with DFHTEMP

| End of Product-sensitive programming interface 4|

Transaction resource class data

| Product-sensitive programming interface |

Transaction resource records are produced at termination of the transaction for
which the data is being collected. These records are variable length, depending on
the number of resources for which data is being collected (for example, one
transaction might access only 1 file, another 5 files and 2 temporary storage
queues, and so on). For only one file, the record length is 188 bytes plus 96 bytes
for the file data (284 bytes). Each additional file adds another 96 bytes. The
maximum number of files for which you can collect transaction resource data is 64.
For only one temporary storage queue, the record length is 188 bytes plus 96 bytes
for the temporary storage queue data (284 bytes). Each additional temporary
storage queue adds another 96 bytes. The maximum number of temporary storage
queues for which you can collect transaction resource data is 64.

Transaction resource class data for a file or temporary storage queue is collected
and recorded only for local resources, not for remote resources. When an
application accesses a remote file or temporary storage queue, a transaction
resource record is produced in the CICS region where the resource is defined
locally, but no record is produced in the application-owning region.

126 CICS TS for z/OS: CICS Performance Guide

The format of transaction resource records is shown by the DFHMNRDS copybook

in [Figure 12

DFHMNRDS DSECT , Transaction resource monitoring record
MNR_LENGTH DS H Length of resource data
MNR_ID_EQUATE EQU 79 Monitoring domain id mask
MNR_ID DC AL2(MNR_ID EQUATE) Monitoring domain id
MNR_VERSION EQU X'02' DSECT version mask
MNR_DSECT_VERS DS CL1 DSECT version number

DS CL3 Reserved
*
MNR_HEADER DS 0XL32 Header Data
MNR_HDRLEN DS H Length of header data

DS XL2 Reserved

DS XL8 Reserved
MNR_TRN DS H Number of record triplets

DS XL2 Reserved
MNR_ISO DS XL4 O0ffset to ID data
MNR_ISL DS XL2 Length of ID entry
MNR_ISN DS XL2 Number of ID entries
MNR_FSO DS XL4 Offset to File data
MNR_FSL DS XL2 Length of File entry
MNR_FSN DS XL2 Number of File entries
MNR_TSO DS XL4 Offset to TSQueue data
MNR_TSL DS XL2 Length of TSQueue entry
MNR_TSN DS XL2 Number of TSQueue entries
MNR_HDR_LENGTH EQU *-MNR_HEADER Header data length

SPACE ,

MNR_ID_DATA DSECT Identification Data Entry
MNR_ID_TRANID DS CL4 Transaction id
MNR_ID_TERMID DS CL4 Terminal id
MNR_ID_USERID DS CL8 User id
MNR_ID_STYPE DS CL4 Transaction Start type
MNR_ID_START DS XL8 Transaction Start time
MNR_ID_STOP DS XL8 Transaction Stop time
MNR_ID_TASKNO DS XL4 Transaction Sequence Number
MNR_ID_LUNAME DS CL8 VTAM Luname
MNR_ID_PGMNAME DS CL8 First program name
MNR_ID_UOW_PX DS XL20 Network Unit-of-Work Prefix
MNR_ID_UOW_SX DS XL8 Network Unit-of-Work Suffix
MNR_ID_RSYSID DS CL4 Remote sysid routed to
MNR_ID_TRN_FLAGS DS XL8 Transaction flags
MNR_ID_FCTYNAME DS CL4 Transaction Facility name
MNR_ID_RTYPE DS CL4 Resource Record Type

Figure 12. CICS transaction resource monitoring record DSECT (Part 1 of 2)

Chapter 6. The CICS monitoring facility 127

MNR_ID_TERMINFO DS OXL4
MNR_ID_NATURE DS XL1
MNR_ID_NATURE_NOTAPPLIC EQU X'00'
MNR_ID_NATURE_TERMINAL EQU X'01'
MNR_ID_NATURE_SESSION EQU X'02'
MNR_ID_SESSTYPE DS XL1
MNR_ID_SESSTYPE_NOTAPPLIC EQU X'00'
MNR_ID_SESSTYPE_IRC EQU X'01'
MNR_ID_SESSTYPE_IRC XM EQU X'02'
MNR_ID_SESSTYPE_IRC_XCF EQU X'03'
MNR_ID_SESSTYPE_LU61 EQU X'04'
MNR_ID_SESSTYPE_LU62 SING EQU X'05'
MNR_ID_SESSTYPE_LU62_PARA EQU X'06'
MNR_ID_ACMETH — DS XL1
MNR_ID_ACMETH_NOTAPPLIC EQU X'00'

MNR_ID_ACMETH_VTAM EQU X'01'
MNR_ID_ACMETH_BTAM EQU X'02"
MNR_ID_ACMETH_BSAM EQU X'03"
MNR_ID_ACMETH_TCAM EQU X'04'

MNR_ID_ACMETH_TCAMSNA EQU X'05'
MNR_ID_ACMETH_BGAM EQU X'06"
MNR_ID_ACMETH_CONSOLE ~ EQU X'07'
MNR_ID_DEVCODE DS XL1

*

MNR_ID_TERMCNNM DS CL4
MNR_ID_RES_FLAGS DS 0XL4
MNR_ID_RES_FLAG1 DS XL1
MNR_FILE_LIMIT EXCEEDED EQU X'80'

MNR_TSQUEUE_LIMIT_EXCEEDED EQU X'40'

DS~ XL3

DS XL8

DS XL8

DS XL8
MNR_ID_LENGTH EQU *-MNR_ID_DATA

SPACE ,

MNR_FILE_ENTRY DSECT
MNR_FILE_NAME DS CL8
MNR_FILE_GET DS XL8
MNR_FILE PUT DS XL8
MNR_FILE_BRWSE DS XL8
MNR_FILE_ADD DS XL8
MNR_FILE DEL DS XL8
MNR_FILE_TOTAL DS XL8
MNR_FILE_AM RQ DS XL4

DS XL4
MNR_FILE_I0_WT DS XL8
MNR_RLS_FILE I0 WT DS XL8
MNR_CFDT_I0_WT DS XL8

DS XL8

MNR_FILE_LEN EQU *-MNR_FILE_ENTRY

SPACE ,
MNR_TSQUEUE_ENTRY DSECT
MNR_TSQUEUE_NAME DS CL16
MNR_TSQUEUE_GET DS XL8

MNR_TSQUEUE_PUT_AUX DS XL8
MNR_TSQUEUE_PUT MAIN DS XL8
MNR_TSQUEUE_TOTAL DS XL8

DS XL4
MNR_TSQUEUE_GET ITEML DS XL4
MNR_TSQUEUE_PUT_AUX_ITEML DS XL4
MNR_TSQUEUE_PUT_MAIN_ITEML DS XL4

DS XL8
MNR_TSQUEUE_I0_WT DS XL8
MNR_SHR_TSQUEUE_IO_WT DS XL8

DS XL8

Terminal Information
Nature
Not applic
Terminal
Session
Session Type
Not applic
IRC
IRC XM
IRC XCF
LU61
LU62 SINGLE
LU62 PARALLEL
Access method
Not applic
VTAM
BTAM (no longer supported)
BSAM
TCAM/DCB (supported for remote
terminals only)
TCAM/ACB (no Tonger supported)
BGAM
CONSOLE
Device type code
See TYPETERM RDO attribute
Terminal Connection name
Resource flags
Resource flag 1
Resource File 1imit exceeded
Resource TSQueue 1imit exceeded
Reserved
Reserved
Reserved
Reserved
Identification entry data length

File Entry

File name

File Get time/count
File Put time/count
File Browse time/count
File Add time/count
File Delete time/count
File Total time/count
Flie Access Method request count
Reserved

File I/0 wait time

RLS File I/0 wait time
CFDT I/0 wait time
Reserved

File entry data length

TSQueue Entry

TSQueue Name

TSQueue Get time/count
TSQueue Put Aux time/count
TSQueue Put Main time/count
TSQueue Total time/count
Reserved

TSQueue Get Item length
TSQueue Put Aux Item Tength
TSQueue Put Main Item length
Reserved

TSQueue I/0 wait time

Shared TSQueue I/0 wait time
Reserved

MNR_TSQUEUE_LEN EQU *-MNR_TSQUEUE_ENTRY TSQueue entry data length

. CICS tranaseaction resource monitoring record DSECT (Part 2 of 2)

Figure 12
128 CICS TS for 20S: CIGE Berformance G

| End of Product-sensitive programming interface 4,

Transaction resource monitoring data field descriptions

For information about transaction file accesses in performance class monitoring
data, see [‘Performance data in group DFHFILE” on page 90|

Header fields

This section describes the transaction header fields in a transaction monitoring
resource record.

| Product-sensitive programming interface |

MNR_ID_TRANID (TYPE-C, 4 BYTES)
Transaction identifier.

MNR_ID TERMID (TYPE-C, 4 BYTES)
Terminal identifier. This field is null if the task is not associated with a terminal
or session.

MNR_ID USERID (TYPE-C, 8 BYTES)
User identification at task creation. This can also be the remote user identifier
for a task created as the result of receiving an ATTACH request across an MRO
or APPC link with attach-time security enabled.

MNR_ID SYTPE (TYPE-C, 4 BYTES)
Transaction start type. The high-order byte (0 and 1) can have one of the
following values:
"TO" Attached from terminal input
"s" Attached by automatic transaction initiation (ATI) without data
"SD" Attached by automatic transaction initiation (ATI) with data
"QD" Attached by transient data trigger level
"u" Attached by user request
"TP" Attached from terminal TCTTE transaction ID
"SZ" Attached by Front End Programming Interface (FEPI).

MNR_ID START (TYPE-T, 8 BYTES)
Start time of the transaction.

MNR_ID STOP (TYPE-T, 8 BYTES)
Stop time of the transaction.

MNR_ID_TASKNO (TYPE-A, 4 BYTES)
The transaction identification number (the task number allocated to the
transaction at task attach).

MNR_ID LUNAME (TYPE-C, 8 BYTES)
VTAM logical unit name (if available) of the terminal associated with this
transaction. If the task is executing in an application-owning or file-owning
region, the LUNAME is the generic applid of the originating connection for
MRO, LUTYPES6.1, and LUTYPE6.2 (APPC). The LUNAME is blank if the
originating connection is an external CICS interface (EXCI).

MNR_ID_PGMNAME (TYPE-C, 8 BYTES)
The name of the first program invoked at attach-time. For more information, see
field['071 (PGMNAME)” on page 93 in performance data group, DFHPROG.

MNR_ID_UOW_PX (TYPE-C, 20 BYTES)
This field contains the same information as the performance class data field
NETUOWPX (see|'NETUOWPX, in group DFHTASK” on page 103 for details).

Chapter 6. The CICS monitoring facility 129

HH

130

MNR_ID UOW_SX (TYPE-C, 8 BYTES)
This field contains the same information as the performance class data field
NETUOWSX (see['NETUOWSX, in group DFHTASK” on page 103 for details).

MNR_ID_TRN_FLAGS (TYPE-A, 8 BYTES)
Transaction flags, a string of 64 bits used for signaling transaction definition and
status information. For details, see field [‘164 (TRANFLAG)” on page 105 in
performance data group, DFHTASK.

MNR_ID RSYSID (TYPE-C, 4 BYTES)
The name (system ID) of the remote system to which this transaction was
routed, either statically or dynamically. For more information, see fieId
|(RSYSID)” on page 86| in performance data group, DFHCICS.

MNR_ID_FCTYNAME (TYPE-C, 4 BYTES)
Transaction facility name. This field is null if the transaction is not associated
with a facility. You can identify the transaction facility type (if any) using byte 0
of the transaction flags (MNR_ID_TRN_FLAGS) field. For details, see field
[((FCTYNAME)” on page 104]in performance data group DFHTASK.

MNR_ID RTYPE (TYPE-C, 4 BYTES)
Transaction resource monitoring record type (low-order byte-3). Currently this
can have only one value, T, indicating a record output for task termination. For
more information about record types, see field[‘112 (RTYPE)” on page 86| in
performance data group, DFHCICS.

TERMINFO (TYPE-A, 4 BYTES)
Terminal or session information for the task principal facility. For more
information about terminal information, see field ['165 (TERMINFO)” on page]
in performance data group, DFHTERM.

MNR_ID TERMCNNM (TYPE-C, 4 BYTES)
Terminal session connection name. If the terminal facility associated with this
transaction is a session, this field is the name of the owning connection (system
ID). For more information, see field ['169 (TERMCNNM)” on page 118 in
performance data group DFHTERM.

MNR_ID RES_FLAGS (TYPE-A, 4 BYTES)
Resource flags, a string of 32 bits used for signaling resource status
information.

Byte 0
Resource status information:

Bit 0 Maximum number of files to be monitored (defined in the MCT)
has been exceeded by the transaction (X'80')

Bit1 Maximum number of temporary storage queues to be monitored
(defined in the MCT) has been exceeded by the transaction
(X'40"
Bits 2-7
Reserved.
Bytes 1-3
Reserved.

| End of Product-sensitive programming interface 4|

CICS TS for z/OS: CICS Performance Guide

File entry fields
This section describes the fields in each file entry in a transaction resource
monitoring record.

| Product-sensitive programming interface |

MNR_FILE_NAME (TYPE-C, 8 BYTES)
The CICS 8-character name of the file to which the following data fields refer.

MNR_FILE_GET (TYPE-S, 8 BYTES)
The elapsed time that the user task waited for completion of GET requests
issued by the user task for this file. The count part of this field (the low order 24
bits) contains the number of GET requests issued against the file.

For more information, see [‘Clocks and time stamps” on page 70,/ and [‘Wai
|(suspend) times” on page 73]

MNR_FILE_PUT (TYPE-S, 8 BYTES)
The elapsed time that the user task waited for completion of PUT requests
issued by the user task for this file. The count part of this field (the low order 24
bits) contains the number of PUT requests issued against the file.

For more information, see [‘Clocks and time stamps” on page 70,and [‘Wait
[(suspend) times” on page 73]

MNR_FILE_BRWSE (TYPE-S, 8 BYTES)
The elapsed time that the user task waited for completion of BROWSE requests
issued by the user task for this file. The count part of this field (the low order 24
bits) contains the number of BROWSE requests issued against the file.

For more information, see [‘Clocks and time stamps” on page 70,/ and [‘Wait
[(suspend) times” on page 73

MNR_FILE_ADD (TYPE-S, 8 BYTES)
The elapsed time that the user task waited for completion of ADD requests
issued by the user task for this file. The count part of this field (the low order 24
bits) contains the number of ADD requests issued against the file.

For more information, see [‘Clocks and time stamps” on page 70,/ and [‘Wait
[(suspend) times” on page 73]

MNR_FILE_DEL (TYPE-S, 8 BYTES)
The elapsed time that the user task waited for completion of DELETE requests
issued by the user task for this file. The count part of this field (the low order 24
bits) contains the number of DELETE requests issued against the file.

For more information, see [‘Clocks and time stamps” on page 70| and [‘Wait]
[(suspend) times” on page 73]

MNR_FILE_TOTAL (TYPE-S, 8 BYTES)
The total elapsed time that the user task waited for completion of all requests
issued by the user task for this file. The count part of this field (the low order 24
bits) contains the number of all requests issued against the file.

For more information, see [‘Clocks and time stamps” on page 70,/ and [‘Wait|
|(suspend) times” on page 73]

MNR_FILE_AM RQ (TYPE-A, 4 BYTES)
Number of times the user task invoked file access-method interfaces. See also
field[*FCAMCT in group DFHFILE” on page 91|

MNR_FILE_IO WT (TYPE-S, 8 BYTES)
The total 1/0 wait time on this file.

Chapter 6. The CICS monitoring facility 131

For more information, see [‘Clocks and time stamps” on page 70,/ and [‘Wait
[(suspend) times” on page 73.|

MNR_RLS_FILE_IO WT (TYPE-S, 8 BYTES)
Elapsed time in which the user task waited for RLS file I/O on this file. For more
information, see[‘Clocks and time stamps” on page 70,|and [‘Wait (suspend)|
times” on page 73|

MNR_CFDT_IO_WT (TYPE-S, 8 BYTES)
Elapsed time in which the user task waited for a data table access request to
the coupling facility data table server to complete for this file. For more
information, see[‘Clocks and time stamps” on page 70,|and [‘Wait (suspend)|
times” on page 73

| End of Product-sensitive programming interface 4|

Temporary storage queue entry fields
This section describes the fields in each temporary storage queue entry in a
transaction resource monitoring record.

For information about transaction temporary storage queue accesses in
performance class monitoring data, see [‘Performance data in group DFHTEMP” on|

| Product-sensitive programming interface |

MNR_TSQUEUE_NAME (TYPE-C, 16 BYTES)
The CICS 16-character name of the temporary storage queue to which the
following data fields refer.

MNR_TSQUEUE_GET (TYPE-S, 8 BYTES)
The elapsed time that the user task waited for completion of GET requests
issued by the user task for this temporary storage queue. The count part of this
field (the low order 24 bits) contains the number of GET requests issued
against the temporary storage queue.

For more information, see [‘Clocks and time stamps” on page 70,/ and [‘Wait
[(suspend) times” on page 73.|

MNR_TSQUEUE_PUT_AUX (TYPE-S, 8 BYTES)
The elapsed time that the user task waited for completion of PUT requests to
auxiliary temporary storage, issued by the user task for this temporary storage
queue. The count part of this field (the low order 24 bits) contains the number
of PUT requests to auxiliary temporary storage issued against the temporary
storage queue.

For more information, see [‘Clocks and time stamps” on page 70,/ and [‘Wait|
|(suspend) times” on page 73.|

MNR_TSQUEUE_PUT_MAIN (TYPE-S, 8 BYTES)
The elapsed time that the user task waited for completion of PUT requests to
main temporary storage, issued by the user task for this temporary storage
queue. The count part of this field (the low order 24 bits) contains the number
of PUT requests to main temporary storage issued against the temporary
storage queue.

For more information, see [‘Clocks and time stamps” on page 70,/ and [‘Wait]
|(suspend) times” on page 73.|

132 CICS TS for z/OS: CICS Performance Guide

MNR_TSQUEUE_TOTAL (TYPE-S, 8 BYTES)
The total elapsed time that the user task waited for completion of all requests
issued by the user task for this temporary storage queue. The count part of this
field (the low order 24 bits) contains the number of all requests issued against
the temporary storage queue.

For more information, see [‘Clocks and time stamps” on page 70,/ and [‘Wait]
|(suspend) times” on page 73]

MNR_TSQUEUE_GET_ITEML (TYPE-S, 4 BYTES)
The total length of all items obtained from this temporary storage queue.

MNR_TSQUEUE_PUT_AUX_ITEML (TYPE-S, 4 BYTES)
The total length of all items written to the auxiliary temporary storage queue.

MNR_TSQUEUE_PUT_MAIN_ITEML (TYPE-S, 4 BYTES)
The total length of all items written to the main temporary storage queue.

MNR_TSQUEUE_IO WT (TYPE-S, 8 BYTES)
The total I/0O wait time on this temporary storage queue.

For more information, see [‘Clocks and time stamps” on page 70,|and [‘Wait
[(suspend) times” on page 73]

MNR_SHR_TSQUEUE_IO WT (TYPE-S, 8 BYTES)
The total 1/0 wait time on the shared temporary storage queue.

For more information, see [‘Clocks and time stamps” on page 70,/ and [‘Wait
[(suspend) times” on page 73]

| End of Product-sensitive programming interface 4,

Chapter 6. The CICS monitoring facility 133

134 CICS TS for z/OS: CICS Performance Guide

Chapter 7. CICS Performance Analyzer for z/0S (CICS PA)

CICS Performance Analyzer (CICS PA) is a reporting tool that provides information
on the performance of your CICS systems and applications, and helps you tune,
manage, and plan your CICS systems effectively.

CICS PA also provides a Historical Database facility to help you manage the
performance data for your CICS transactions.

CICS PA is not an online monitoring tool - instead, it provides reports and extracts
using the data normally collected by your system in MVS System Management
Facility (SMF) data sets: CICS Monitoring Facility (CMF) performance, exception
and transaction resource class records (SMF 110), DB2 accounting records (SMF
101), WebSphere MQ accounting records (SMF 116), and System Logger records
(SMF 88). It is designed to complement the CICS-supplied utilities and sample
programs such as DFH$MOLS, DFHSTUP, and DFHOSTAT.

CICS PA can help:

» System Programmers to track overall CICS system performance and evaluate
the results of their system tuning efforts

» Application Programmers to analyze the performance of their applications and
the resources they use

» Database Administrators to analyze the usage and performance of database
systems such as IMS and DB2

* MQ Administrators to analyze the usage and performance of their WebSphere
MQ messaging systems

* Managers to ensure transactions are meeting their required Service Levels and
measure trends to help plan future requirements and strategies

CICS PA reports all aspects of CICS system activity and resource usage, including:
* Transaction response time
» CICS system resource usage

» Cross-system performance, including multiregion operation (MRO) and advanced
program-to-program communication (APPC)

» Business Transaction Services (BTS)

» CICS Web support

» External subsystems, including DB2, IMS, and WebSphere MQ
» System Logger performance

» Exception events that cause performance degradation

» Transaction File and Temporary Storage usage

For more information on the reports provided, see[‘Using CICS PA to analyze CICS|
[performance” on page 138.|

CICS PA provides both an ISPF dialog and a command interface. You can use
either to request your reports and extracts. For more information, see|“The CICS
[PA dialog” on page 136.

© Copyright IBM Corp. 1983, 2011 135

The CICS PA dialog

The CICS PA dialog helps you to create, maintain and submit your report requests.
It also helps you to specify your input data and tailor requests specific to your
requirements without you having to understand the CMF data.

The dialog requires no special customization or setup. Reporting can commence
immediately.

The following steps explain how to use the dialog for reporting.

1.

Define your CICS (and other related) systems and their SMF files. Once your
systems are defined, you can start reporting against them. You can fast-track
this process by using the Take-up facility. CICS PA extracts information about
your CICS systems from your SMF files and makes it available in the dialog. If
you define your own CMF user fields, then specify your MCT definition. The
user fields can then be incorporated into your CICS PA reports. The panel below
shows some CICS systems, a DB2 subsystem, a WebSphere MQ subsystem,
and an MVS System Logger defined to CICS PA.

4 System Definitions Row 1 from 8
Command ===> Scroll ===> CSR
Select a System to edit its definition, SMF Files and Groups.

SMF Files
/ System Type Image Description System
_ Mvs1 Image Production MVS system MVS1
_ CICSP1 CICS MVS1 CICS Production System 1 MVS1
_ CICSPTOR CICS MVS1 CICS Production TOR MVS1
_ CICSPAOR CICS MVS2 CICS Production AOR CICSPAOR
_ CICSPFOR CICS MVS2 CICS Production FOR CICSPFOR
_ DbB2P DB2 MVS3 DB2 Production Subsystem DB2P
_ MQSPp MQ MVS4 MQ Production Subsystem MQSP
_ MVS1LOGR Logger MVS1 System Logger for MVS1 MVS1
o J

Figure 13. CICS PA: System Definitions

Related CICS systems, such as those systems that connect via IRC/MRO or
ISC/APPC, can be grouped together for reporting purposes. For example,
assigning the CICS MRO systems (CICSPTOR, CICSPAOR, CICSPFOR,
CICSPDOR) to a group allows you to report on these systems as a single entity.
CICS PA reports can then show a complete end-to-end picture of your MRO
transaction activity, incorporating detailed DB2 statistics derived from the DB2
accounting data of subsystem DB2P.

Define Report Sets to build, submit and save your report requests. A Report Set
contains the set of reports that you wish to run in a single job. Simply select the
required reports and submit.

[Figure 14 on page 137 shows a Report Set. The available reports are displayed
in a tree structure (folder style) and grouped by category. Report categories can
be expanded or collapsed as required. The Active status controls which reports
in the Report Set are run when you submit a report request.

136 CICS TS for z/0S: CICS Performance Guide

/

.

EDIT Report Set — DAILY Row 1 of 34)
Command ===> Scroll ===> CSR
Description Daily Reports for our production MRO system
Enter "/" to select action.
o *% Reports #** Active
- __ Options Yes
___ Global Yes
- Selection Criteria Yes
Performance Yes
__ Exception No
- ___ Performance Reports Yes
_ List Yes
_ List Extended Yes
__ Summary Yes
___ Totals Yes
__ Wait Analysis No
___ Cross-System Work Yes
__ Transaction Group No
___ BTS No
___ MWorkload Activity No
- __ Exception Reports Yes
List Yes
__ Summary Yes
- ___ Transaction Resource Usage Reports No
File Usage Summary No
Temporary Storage Usage Summary No
__ Transaction Resource Usage List No
- ___ Subsystem Reports No
___ DbB2 No
___ WebSphere MQ No
- System Reports Yes
___ System Logger Yes
- __ Performance Graphs No
Transaction Rate No
__ Transaction Response Time No
- __ Extracts No
Cross-System Work No
Export No
___ Record Selection No
** End of Reports **

Figure 14. CICS PA: Report Set

Report Sets can contain Selection Criteria which are used to filter CMF records.
This enables you to tailor your reporting to include only the information that you
are interested in. For example, you can specify Selection Criteria to restrict
reporting to:

* A particular date/time range

» A group of related transaction IDs

» Transaction response times that exceed your thresholds

Define Report Forms to tailor the format and content of your reports. An editor
allows you to design your own report by selecting the required CMF fields. Most
CMF fields can be selected for reporting and detailed explanations of each CMF
field is available from the dialog. Report Forms can contain Selection Criteria.
When a report specifies a Report Form and both have Selection Criteria
specified, records must match both to be included in the report.

Chapter 7. CICS Performance Analyzer for z/OS (CICS PA) 137

shows a Report Form tailored to show File Control statistics.

4 EDIT LIST Report Form - FCLIST Row 1 of 16 More: >
Command ===> Scroll ===> CSR
Description File Control List Form Version (VRM): 620
Selection Criteria:

Performance =
Field
/ Name + Type Description
__ TRAN Transaction identifier
__ USERID User ID
__ STOP TIMET Task stop time
__ RESPONSE Transaction response time
___ DISPATCH TIME Dispatch time
__CpU TIME CPU time
__ FCWAIT TIME File I/0 wait time
__ FCAMCT File access-method requests
__ FCADD File ADD requests
___ FCBROWSE File Browse requests
__ FCDELETE File DELETE requests
__ FCGET File GET requests
__ FCput File PUT requests
__ FCTOTAL File Control requests
=10 S End of Report -----------uun--
__EOX e End of Extract ---------------

Figure 15. CICS PA: Report Form

4. Define and maintain Historical Databases (HDBs) as repositories of

performance data. Generate reports against your HDBs or export HDB data to
DB2 tables for further analysis.

Using CICS PA to analyze CICS performance

CICS PA provides reports and extracts to help you analyze and tune the
performance of your CICS systems and applications:

The Performance List, List Extended, and Summary reports provide a detailed
analysis of transaction activity.

The Performance Totals report provides comprehensive resource usage analysis
of your entire CICS system, or individual transactions.

The Wait Analysis report summarizes transaction activity by Wait time. For each
transaction 1D, the resources that cause this transaction to be suspended are
shown in the order of most to least expensive. This report highlights the system
resource bottlenecks that may be causing bad response time. More detailed
analysis can then be performed, focusing on the problem resources identified.

The Cross-System Work report combines CMF records from your connected
systems (such as MRO and APPC) to produce a consolidated unit-of-work report.

The Cross-System Work extract consolidates CMF records for the same
unit-of-work into a single record in CMF format. The extract data set can then be
processed by CICS PA to produce any of the reports. For example, “Summarize
all multi-system UOWs whose originating transaction ID is TR01”.

138 CICS TS for z/0S: CICS Performance Guide

The Transaction Group report provides a detailed list of incoming work requests.
Transactions that CICS executes under the same incoming work request (for
example, the CWXN and CWBA transactions for CICS Web support requests)
are grouped together in the report.

The CICS BTS report provides a detailed list of BTS activity. Transactions with
the same CICS Business Transaction Services process identifier (root activity
identifier) are grouped together in the report.

The Workload Activity report provides a transaction response time analysis by
MVS Workload Manager (WLM) service and report class. This can be used to
understand from a CICS perspective how well your CICS transactions are
meeting their response time goals. The Workload Activity List report is a
cross-system report that correlates CMF performance class data from single or
multiple CICS systems for each network unit-of-work. Importantly, this report ties
MRO and function shipping tasks to their originating task so that their impact on
response time can be assessed.

The Exception List and Summary reports provide a detailed analysis of the
exception events recorded by CMF.

The Transaction Resource Usage reports process CMF performance data and
CMF resource class data to provide a detailed analysis of File and Temporary
Storage usage.

The DB2 report processes CICS CMF records and DB2 accounting records to
produce a consolidated and detailed view of DB2 usage by your CICS systems.
With this report you can view CICS and DB2 resource usage statistics together in
a single report. The DB2 List report shows detailed information of DB2 activity for
each transaction. The DB2 Summary reports summarize DB2 activity by
transaction and program within APPLID.

The WebSphere MQ report processes MQ accounting (SMF 116) records to
produce a detailed view of MQ usage by your CICS systems. The WebSphere
MQ List report provides a trace of MQ accounting records. The WebSphere MQ
Summary report provides two summarized views of your MQ transactions: by
CICS transaction ID showing the WebSphere MQ system and queue resources
used, and by WebSphere MQ queue name showing the transactions they service
and resources used.

The System Logger report processes System Logger records to provide
information on the System Logger logstreams and coupling facility structures that
are used by CICS Transaction Server for logging, recovery and backout
operations. The report can assist with measuring the effects of tuning changes
and identifying logstream or structure performance problems.

The Performance Graph reports provide a graphical representation of transaction
rates and response times.

For a more comprehensive analysis of transaction rates and response times, you
can request an Export extract which you can then process using external
programs such as DB2, or transfer to PC for manipulation and graphing by PC
spreadsheet or database tools.

Report Forms allow you to tailor the format of reports and extracts, for example, to
specify which fields, the order of columns, and the sort sequence.

Selection Criteria enable you to filter your reporting, for example to include data
only for a particular transaction 1D, and only for a specific period of time.

The following sections provide some examples of using CICS PA reports in CICS
performance analysis and tuning. For further information, see the CICS
Performance Analyzer for z/OS Report Reference (SC34-6308).

Chapter 7. CICS Performance Analyzer for z/OS (CICS PA) 139

Performance List report

The Performance List report provides a detailed list of CMF performance class
records. Any CMF field can be included in the report.

You can tailor the report format to provide specific information to meet your needs.
For example, you can request:

 File Control activity for each transaction

» IMS DBCTL activity for each transaction

» DB2 activity for each transaction

The sample report in shows IMS DBCTL activity for each transaction. To
produce such a report, you need to collect IMS DBCTL statistics in your CMF
performance records by specifying macro DFHSMCTD in your MCT definition. The
DBCTL information that you can then request includes:

* PSB name

» Various IMS DBCTL internal elapsed times

» Various IMS DBCTL CPU times

* DLI and database call counts, including DEDB statistics

* Enqueue statistics

CICS Performance Analyzer
Performance List

LISTOOO1 Printed at 13:56:47 3/01/2003 Data from 15:58:48 2/19/2003 APPLID CICSP1

Tran

DLI1
DLI2
DLI3
DLI4
DLI5
DLI6
DLI2
DLI3
DLI5
DLI1

PSB

PSBOO1
PSB002
PSB0O3
PSB004
PSB0O5
PSB006
PSB002
PSB00O3
PSB00O5
PSBOO1

Analysis of Transaction IMS DBCTL Usage

Response UserCPU IMS Reqs IMS Wait IMS Wait SchedElp PoolWt IC Wt DBIOET PILockEl ThredCPU DLI DBIO

Time
.9288
.5302
.4382
L0711
.2516
.3658
91.8213
156.501
233.355
95.2870

—wwo

2.
2.
2.

—

Time Time Count Time Time Time Time Time Time Calls Call
1340 3 1.5556 5 1.0004 .0000 .0000 .0023 .0000 .0041 2 1
1659 3 .2359 5 .0010 .0000 .0000 .0017 .0000 .0289 2 1
1744 3 .5010 5 .0010 .0000 .0000 .0018 .0000 .0289 2 1
.0428 2 .7553 4 .0024 .0000 .0000 .0000 .0000 .0299 1 0
.0118 2 .2319 4 .0010 .0000 .0000 .0000 .0000 .0318 1 0
L0117 2 .3478 4 .0011 .0000 .0000 .0000 .0000 .0327 1 0
.8717 2 14.8960 4 .0010 .0000 .0000 .0000 .0000 .0286 1 0
.9866 2 18.3825 4 .0055 .0000 .0000 .0019 .0000 .0298 1 1
L9771 2 21.3535 4 .0049 .0000 .0000 .0000 .0000 .0293 1 0
L9511 2 21.4463 4 .0050 .0000 .0000 .0018 .0000 .0288 1 1

Figure 16. CICS PA: List of IMS DBCTL transactions

Performance List Extended report

The Performance List Extended report provides a detailed list of CMF performance
class records, similar to the Performance List report, but in addition it allows you to
specify sorting criteria. Any CMF field can be included in the report.

The sorting capability helps to highlight problems. For example, the sample report in
[Figure 17 on page 141|has been sorted by transaction ID in ascending sequence,
then response time in descending sequence with a limit of 20, and the format has
been tailored to include DB2 statistics. This enables you to quickly analyze
response time problems by identifying:

* The worst performing transactions, along with their DB2 activity (notice the DB2
times and counts on the right hand side of the report). Only the 20 worst
response times for each transaction ID are reported.

» The CICS internal or external resource that may have caused the problems.

140 CICS TS for z/OS: CICS Performance Guide

CICS Performance Analyzer
Performance List Extended

LSTX0001 Printed at 15:00:28 3/01/2003 Data from 10:07:42 2/28/2003 to 16:41:05 2/28/2003
Bad DB2 transaction response time

Tran Response Userid Program Stop Dispatch UserCPU Suspend DispWt DB2ConWt DB2ThdWt DB2 DB2SQLWt SockWt

Time Time Time Time Time Time Time Time Regs Time Time
CRD4 114.574 JOHN CORDO4P 12:26:25.765 4.9961 4.6084 109.578 3.7039 .0000 90.2326 9178 19.3442 .0000
CRD4 95.2259 STEVE CORDO4P 12:26:04.243 5.1529 4.6320 90.0730 9.0971 .0000 .0000 8436 90.0727 .0000
CRD4 94.8672 CHRIS CORDO4P 12:26:04.954 5.0842 4.6390 89.7829 8.0275 .0000 .0000 8574 89.7826 .0000
CRD4 93.6422 SHIRLEY CORDO4P 12:26:01.425 5.1434 4.6228 88.4988 8.7084 .0000 .0000 8465 88.4984 .0000
CRD4 81.5987 DAVID CORDO4P 12:22:21.938 4.9596 4.5885 76.6391 6.4075 .0000 .0000 8335 76.6388 .0000
CRD4 81.2668 KATH CORDOAP 12:22:22.820 4.9766 4.5806 76.2901 6.3358 .0000 .0000 9346 76.2898 .0000
CRD4 80.0224 MIKE CORDO4P 12:22:18.958 5.2067 4.6592 74.8158 6.0739 .0000 .0000 8690 74.8154 .0000
CRD4 38.3645 JAMES ~ CORDO4P 12:16:12.420 5.0326 4.6100 33.3319 5.4501 .0000 .0000 9124 33.3315 .0000
CRD5 102.066 JOHN CORDO5P 12:22:44.565 4.8183 4.4576 97.2478 4.4576 .0000 76.4557 6573 20.7892 .0000
CRD5 36.3721 CHRIS CORDO5P 12:16:22.814 5.0605 4.5812 31.3116 4.4883 .0000 .0000 9102 31.3103 .0000
CRD5 23.2860 DAVID CORDO5P 12:12:04.661 5.4456 4.6209 17.8404 3.9595 .0000 .0000 8221 17.7935 .0000

CRD5 1.0671 SHIRLEY CORDO5P 11:49:21.077 .4447 .0405 .6223 .0037 .0000 .0000 1 .6192 .0000
CRD5 .6346 MIKE CORDO5P 11:43:43.859 .1315 .0443 .5032 .3209 .0000 .0000 1 .1821 .0000

Figure 17. CICS PA: List of the worst performing transactions that use DB2

Performance Summary report

The Performance Summary report provides a summary of the CMF performance
class records and allows you to specify sorting criteria. In addition, Clock and Count
type fields can be summarized statistically. You can request any of: the average,
minimum, maximum, total, or standard deviation. Any CMF field, including
user-defined EMPs, can be included in the report.

You can tailor the report format to provide specific information to meet your needs.
For example, the sample report in |Figure 18| shows transaction activity over time.
The CMF records are sorted by transaction stop time, then transaction ID, and the
report summarizes the activity for each 15 minute time interval (you can specify the
time interval anywhere from 1 second to 24 hours). The Task Count (#Tasks) shows
the number of transactions processed during the interval.

CICS Performance Analyzer
Performance Summary

SUMMOOO1 Printed at 18:14:19 3/01/2003 Data from 15:00:02 10/30/2002 to 16:00:28 10/30/2002
Transaction Summary by Time of Day

Avg Max Avg Avg Avg Avg Avg Avg Avg Avg Avg
Stop Tran #Tasks Response Response Dispatch UserCPU Suspend DispWait FC Wait FCAMRg IR Wait SC24UHWM SC31UHWM
Interval Time Time Time Time Time Time Time Time
15:00:00 FINA 201 L1743 .3789 .0030 .0029 L1713 .0053 .0125 18 .0000 0 88360
15:00:00 ORDR 199 .1666 .3674 .0029 .0028 .1637 .0056 .0134 18 .0000 0 88356
15:00:00 STOK 230 .0062 .0145 .0026 .0025 .0036 .0005 .0030 18 .0000 0 88352
15:00:00 8903 .0473 .6318 .0013 .0013 .0460 .0015 .0035 7 .0000 0 69261
15:45:00 FINA 89 .1533 .3164 .0031 .0028 .1502 .0049 .0122 18 .0000 0 88354
15:45:00 ORDR 103 .0062 .0141 .0026 .0025 .0036 .0004 .0031 18 .0000 0 88352
15:45:00 STOK 108 .0062 .0206 .0026 .0025 .0035 .0004 .0029 18 .0000 0 88352

15:45:00 4489 .0476 .6584 .0014 .0013 .0463 .0016 .0035 7 .0000 0 69842

Figure 18. CICS PA: Summary of transaction activity by time of day

Selection Criteria provide a powerful mechanism for filtering the data. The sample
report in [Figure 19 on page 142| summarizes the activity of transactions using the
Web Interface. Transactions are only reported if they were active in the report
period, their transaction ID matches the mask WB*, and they performed at least one

Chapter 7. CICS Performance Analyzer for z/OS (CICS PA) 141

Web request.

CICS Performance Analyzer
Performance Summary

SUMMO0O2 Printed at 8:06:34 2/08/2003 Data from 15:04:02 10/30/2002 to 15:07:28 10/30/2002
Summary of Transaction Web Activity

Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg Max
Tran #Tasks Response Dispatch UserCPU Suspend DispWait WBChrIn WBChrOut WBRCV WBRepoRd WBRepoWr WBSEND WB Total
Time Time Time Count Time

WBA1 137 .2912 .2022 .0022
WBA2 156 .2918 .2026 .0022
WBH1 144 .1904 .1022 .0022
WBH2 690 .1619 .0030 .0029
WBT1 412 .4430 .0051 .0049
WBT2 395 .4451 .0053 .0050
WBW1 269 .3233 .0036 .0036
WBW2 438 .3058 .0034 .0032
WBW3 249 .3257 .0037 .0036
WBW4 407 .3058 .0033 .0032

.0027 5647 1637
.0026 4803 921
.0029 5237 1643
.0049 8932 2476
.0134 4750 1728
.0134 6710 1923
.0101 14373 6734
.0091 5266 4326
.0106 7192 6127
.0097 9127 7910

N—EHRRONONN—OOO
= NN e e
RPN WS R~ NN
ONONNWO DN -
=R R NN e e
WERWWANNNWN

Figure 19. CICS PA: Summary of transaction Web activity

Performance Totals report

The Performance Totals report gives a comprehensive resource usage analysis of
your CICS system. It can be used to gain a system-wide perspective of CICS
system performance. Alternatively, you can use Selection Criteria to narrow down
the scope of the report, such as “Show me resource usage for a particular group of
transaction IDs”.

The report has four parts:

1. Part 1 provides statistics about the CICS system as a whole, including:
* CPU and Dispatch times, broken down by TCB types
* Performance Record and Task counts

2. Part 2 provides a breakdown of CPU, Dispatch, and Suspend counts and
elapsed time. CPU time is broken down by TCB types.

3. Part 3 shows resource utilization statistics, summarizing each field in the
performance records.

4. Part 4 reports statistics for the User Fields (user-defined EMPs) in the CMF
performance records.

142 CICS TS for z/OS: CICS Performance Guide

CICS Performance Analyzer

Performance Totals

TOTLOAOL Printed at 7:48:49 2/28/2003 Data from 11:10:52 2/24/2003 to 11:34:12 2/24/2003

Dispatched Time
DD HH:MM:SS Secs

Total Elapsed Run Time 00:23:20 1400

From Selected Performance Records

QR Dispatch/CPU Time 00:00:14 14
MS Dispatch/CPU Time 00:00:16 16
Total (QR + MS) 00:00:30 30
L8 CPU Time
J8 CPU Time
S8 CPU Time
Total (L8 + J8 + S8) 00:00:00 0
Total CICS TCB Time 00:00:30 30
Total Performance Records (Type C) 0
Total Performance Records (Type D) 14
Total Performance Records (Type F) 0
Total Performance Records (Type S) 0
Total Performance Records (Type T) 676
Total Performance Records (Selected) 690

CPU Time
DD HH:MM:SS Secs
00:00:08 8
00:00:01 1
00:00:09 9
00:00:00 0
00:00:00 0
00:00:00 0
00:00:00 0
00:00:09 9

Total Performance Records

Figure 20. CICS PA: Performance Totals report (Part 1 of 3)

...... Co0OUuUNTS......

From Selected Performance Records Total Avg/Task
Dispatch Time 20664 29.9
CPU Time

RLS CPU (SRB) Time

Suspend Time 20650 29.9
Dispatch Wait Time 19974 28.9
Dispatch Wait Time (QR Mode) 18919 27.4

Response (-TCWait for Type C)

Response (A11 Selected Tasks)

QR Dispatch Time 19595 28.4
MS Dispatch Time 1000 1.4
RO Dispatch Time

QR CPU Time

MS CPU Time

RO CPU Time

L8 CPU Time

J8 CPU Time

S8 CPU Time

Max/Task
7681
7681

7680
7680

7681
93

Figure 20. CICS PA: Performance Totals report (Part 2 of 3)

T IME

Avg/Task

.044
.013
.000
5.341
.006
.002
.000
5.385
.021
.024

.011
.002

.000
.000
.000

Max/Task

12.
3.

677
168

.000

1102.

221

.920
.660
.000

1102.

234

.796
.881

.692

.476

.001
.000
.000

Chapter 7. CICS Performance Analyzer for z/OS (CICS PA)

143

...... COUNTS....te cvveeeeeee. T M Ewneaa....

From Selected Performance Records Total Avg/Task Max/Task Total Avg/Task Max/Task
FCWAIT File I/0 wait time 671 1.0 283 4 .006 1.809
RLSWAIT RLS File I/0 wait time 1 .0 1 0 .000 .069
TSWAIT ~ VSAM TS I/0 wait time 33 .0 2 0 .000 .017
TSSHWAIT Asynchronous Shared TS wait time 0 .0 0 0 .000 .000
JCWAIT Journal I/0 wait time 473 .7 12 15 .022 1.755
TDWAIT VSAM transient data I/0 wait time 0 .0 0 0 .000 .000
IRWAIT MRO Tlink wait time 369 .5 28 98 .142 65.789
CFDTWAIT CF Data Table access requests wait time 0 .0 0 0 .000 .000
CFDTSYNC CF Data Table syncpoint wait time 0 .0 0 0 .000 .000
RUNTRWAI BTS run Process/Activity wait time 16 .0 2 1 .002 .448
SYNCDLY SYNCPOINT parent request wait time 32 .0 3 4 .006 .686
RMITIME Resource Manager Interface (RMI) elapsed time 30 .0 1 41 .060 2.178
RMISUSP Resource Manager Interface (RMI) suspend time 117 .2 6 41 .060 2.177
TCMSGIN1 Messages received count 424 .6 37
TCCHRINI Terminal characters received count 2968 4.3 274
TCMSGOU1 Messages 426 .6 37
TCCHROUL Terminal characters sent count 250456 363.0 29616
TCMSGIN2 Messages received from LU6.1 0 .0 0
TCCHRIN2 LU6.1 characters received count 8537 12.4 4329
TCMSGOU2 Messages sent to LU6.1 0 .0 0
TCCHROU2 LU6.1 characters sent count 0 .0 0
TCALLOC TCTTE ALLOCATE requests 7 .0 1
TCM62IN2 LU6.2 messages received count 0 .0 0
TCC62IN2 LU6.2 characters received count 0 .0 0
TCM620U2 LU6.2 messages sent count 0 .0 0
TCC620U2 LU6.2 characters sent count 0 .0 0
FCADD File ADD requests 92 .1 6

File Browse requests 3416 5.0 2387

FCBROWSE

Figure 20. CICS PA: Performance Totals report (Part 3 of 3)

Wait Analysis report

The Wait Analysis report provides a breakdown of wait activity by transaction ID (or
other ordering fields). You can specify up to three sort fields to determine the sort
order of the report and enable the data to be aggregated. You can see at a glance
which CICS resources are causing your transactions to be suspended. This report
can help you to quickly identify the possible source of a performance response time
problem.

A Recap report is always produced and provides an overview of system-wide wait
time. All CMF suspend components are reported in descending wait time order
ensuring that the primary cause of system-wide task wait is at the top of the list.

The Recap report shows all wait clocks, even clocks that accumulated no wait time.
This allows you to see at a glance:

1. All the individual Suspend component clocks.

2. Which clocks may be missing.

Figure 21 on page 145|shows part of the Wait Analysis report and

page 146| shows the Wait Analysis Recap report.

144 CICS TS for z/OS: CICS Performance Guide

CICS Performance Analyzer
Wait Analysis Report

WAITO001 Printed at 16:02:13 8/06/2003 Data from 08:06:06 8/05/2003 to 08:13:33 8/05/2003

Tran=CATA Start=08:00:00 Program=CATAPROG Interval=08:00:00

Summary Data emeeeen Time =====--en —mmeee Count =--=-== —ocoe- Ratio ------
Total Average Total Average
Tasks 1
Response Time 0.0038 0.0038
Dispatch Time 0.0022 0.0022 3 3.0 59.5% of Response
CPU Time 0.0016 0.0016 3 3.0 70.0% of Dispatch
Suspend Wait Time 0.0015 0.0015 3 3.0 40.0% of Response
Dispatch Wait Time 0.0000 0.0000 2 2.0 1.1% of Suspend
Resource Manager Interface (RMI) elapsed time 0.0001 0.0001 4 4.0 2.1% of Response
Resource Manager Interface (RMI) suspend time 0.0000 0.0000 0 0.0 0.0% of Suspend
Suspend Detail e Suspend Time ----=----mmmmmmmmmn —emeo Count -----
Total Average %age Graph Total Average
N/A Other Wait Time 0.0014 0.0014 92.6% |*Hkkkkkrkkkkhkkkhhx 2 2.0
DSPDELAY First dispatch wait time 0.0001 0.0001 7.4% |* 1 1.0
Tran=XV0J Start=08:00:00 Program=XVOJPROG Interval=08:00:00
Summary Data amemeeen Time --------- ———--- Count ------ ------ Ratio ------
Total Average Total Average
Tasks 261
Response Time 28.1101 0.1077
Dispatch Time 3.2940 0.0126 10578 40.5 11.7% of Response
CPU Time 2.4824 0.0095 10578 40.5 75.4% of Dispatch
Suspend Wait Time 24.8144 0.0951 10578 40.5 88.3% of Response
Dispatch Wait Time 2.9375 0.0113 10317 39.5 11.8% of Suspend
Resource Manager Interface (RMI) elapsed time 17.0496 0.0653 11365 43.5 60.7% of Response
Resource Manager Interface (RMI) suspend time 16.8430 0.0645 10255 39.3 67.9% of Suspend
Suspend Detail e eo Suspend Time =--==---ocmmmmmcmon comem Count -----
Total Average %age Graph Total Average
IMSWAIT IMS (DBCTL) wait time 13.6869 0.0524 55.2% |*xkxxkkkknk 9781 37.5
DSPDELAY First dispatch wait time 4.8588 0.0186 19.6% |*xx 261 1.0
TCLDELAY > First dispatch TCLSNAME wait time 4.7523 0.0182 19.2% |**x 56 0.2
IRIOWTT MRO link wait time 3.0935 0.0119 12.5% |** 59 0.2
DB2WAIT DB2 SQL/IFI wait time 3.0747 0.0118 12.4% |** 389 1.5
N/A Other Wait Time 0.0828 0.0003 0.3% 86 0.3
LMDELAY Lock Manager (LM) wait time 0.0177 0.0001 0.1% 2 0.0

Figure 21. CICS PA: Wait Analysis report

Chapter 7. CICS Performance Analyzer for z/OS (CICS PA) 145

CICS Performance Analyzer
Wait Analysis Recap Report

WAITO001 Printed at 16:02:13 8/06/2003 Data from 08:06:06 8/05/2003 to 08:13:33 8/05/2003

--------- Time -------- ------ Ratio ------
Total Average

Tasks 11768
Response Time 2156.6275 0.1833
Dispatch Time 136.3500 0.0116 6.3% of Response
CPU Time 76.7092 0.0065 56.3% of Dispatch
Suspend Wait Time 2020.1995 0.1717 93.7% of Response
Dispatch Wait Time 52.9988 0.0045 2.6% of Suspend
Resource Manager Interface (RMI) elapsed time 847.5371 0.0720 39.3% of Response
Resource Manager Interface (RMI) suspend time 842.6671 0.0716 41.7% of Suspend

------------------- Suspend Time ------------------- Field Availability

Total Average %age Graph Present Missing

IRIOWTT MRO link wait time 835.9785 0.0710 41.4% |*xxxxxxx 11768 0
IMSWAIT IMS (DBCTL) wait time 477.9522 0.0406 23.7% |**xx 11768 0
WTEXWAIT External ECB wait time 292.1129 0.0248 14.5% |** 11768 0
ICDELAY Interval Control (IC) wait time 275.9447 0.0234 13.7% |** 11768 0
DB2WAIT DB2 SQL/IFI wait time 70.8436 0.0060 3.5% 11768 0
DSPDELAY First dispatch wait time 52.3120 0.0044 2.6% 11768 0
TCLDELAY > First dispatch TCLSNAME wait time 46.5026 0.0040 2.3% 11768 0
MXTDELAY > First dispatch MXT wait time 0.0000 N/C 0.0% 11768 0
FCIOWTT File I/0 wait time 8.1584 0.0007 0.4% 11768 0
N/A Other Wait Time 3.0880 0.0003 0.2%
LUB2WTT LU6.2 wait time 2.7382 0.0002 0.1% 11768 0
WTCEWAIT CICS ECB wait time 0.5165 0.0000 0.0% 11768 0
LMDELAY Lock Manager (LM) wait time 0.4619 0.0000 0.0% 11768 0
TDIOWTT VSAM transient data I/0 wait time 0.0530 0.0000 0.0% 11768 0
GVUPWAIT Give up control wait time 0.0396 0.0000 0.0% 11768 0
TCIOWTT Terminal wait for input time 0.0001 0.0000 0.0% 11768 0
RQRWAIT Request Receiver wait Time 0.0000 0.0000 0.0% 0 11768
TSIOWTT VSAM TS I/0 wait time 0.0000 N/C 0.0% 11768 0
ENQDELAY Local Enqueue wait time 0.0000 N/C 0.0% 11768 0
DB2CONWT DB2 Connection wait time 0.0000 N/C 0.0% 11768 0
DB2RDYQW DB2 Thread wait time 0.0000 N/C 0.0% 11768 0

«Total (A11 Suspend wait events) 2020.1995

(=]

1717 100.0% | sk ek ek e ok e ok e ok ok e ok ok ok

Figure 22. CICS PA: Wait Analysis Recap report

Cross-System Work report

The Cross-System Work report accepts CMF performance class records from a
single CICS system or multiple CICS systems and correlates the data by network
unit-of-work (UOW) ID. Each line on the report is a single CMF record. Records that
are part of the same network UOW appear together with a blank line between.

Each print line has sufficient information to find the corresponding record(s) in the
Performance List report.

[Figure 23 on page 147|shows a sample Cross-System Work report. The Request
Types are:

AP: Application program request, including DPL

FS: Function shipping request:
F = File Control
| = Interval Control
D = Transient Data
S = Temporary Storage
TR: Transaction routing request from a terminal-owning region, showing the

connection name (sysid) of the remote system to which the transaction was
routed.

146 CICS TS for z/OS: CICS Performance Guide

CICS Performance Analyzer
Cross-System Work

CROSOMO1 Printed at 7:08:18 2/25/2003 Data from 11:10:51 1/24/2003 to 11:34:13 1/24/2003

Request Fcty Conn UOW R Response A
Tran Userid SC TranType Term LUName Type Program T/Name Name NETName Seq APPLID Task T Stop Time Time B
STOC ROBERT U U R AP: UK0OSTOC UKHEADQU.UK0S23A 1 CICSP1 242 T 11:19:41.001 .7984
RED1 ROBERT U U R AP: UKOORED1 UKHEADQU.UK0S23A 1 CICSP1 241 T 11:19:40.337 .1479
SAL1 ROBERT TP U T12A LUO123C AP: UKOOSAL1 T/S23C UKHEADQU.UKOS23A 1 CICSP1 239 T 11:19:40.334 .1835
RUPD JAMES TO U L23A LUG123C TR:JTC1 T/L23A UKHEADQU.UKOS23A 1 CICSP3 364 T 11:22:36.066 .002 9
AUPD CHRIS TO U R11 LYK7Z1V1 AP: UKOUAALL S/L23A CJB3 UKHEADQU.UK0S23A 1 CICSP1 192 T 11:22:36.066 .0013
CRD2 DAVE TO U 0006 TCPOOOO6 AP: CORDO2P T/0006 P390.TCPOO0O0O6 1 CICS53T1 53 T 11:22:55.091 1.4707
CSMI CICSUSR TO UM #AAK CICS53T1 FS:F--- DFHMIRS T/#AAK 53T1 P390.TCP00006 1 CICS53A1 43 T 11:22:55.07

Figure 23. CICS PA: Cross-System Work report

Exception List report

The Exception List report provides a detailed list of CMF exception class records,
showing two types of information:

» The cause of the exception condition

« Sufficient information to find the corresponding record(s) in the Performance List
report

Figure 24|shows a sample Exception List report.

CICS Performance Analyzer
Exception List

XLSTOOO1 Printed at 8:26:51 2/16/2003 Data from 08:08:37 2/16/2003

Tran Service Report Task Exp Time Current Resource Except
Tran Term LUName Userid SC Class Class Class No Seq Start Elapsed Program Type Resource ID Type
ABRW PQ45 IG2ZP045 CHRIS TP ABSERVC1 ABREPTC1 834 1 08:08:37 10.189 DFHSABRW FILE FILEA STRING
ABRW S205 IGCS205 BRUCE TP ABSERVC1 ABREPTS1 835 1 08:08:47 7.245 DFHSABRW FILE FILEA STRING
ABRW S220 IGCS220 SHIRLEY TP ABSERVC1 ABREPTS1 837 1 08:08:52 2.996 DFHSABRW FILE FILEA STRING
CECI S220 IGCS220 SHIRLEY TO CISERVC2 CIREPTS2 1151 1 08:12:10 .005 DFHECID TEMPSTOR CACA BUFFER
CECI S220 IGCS220 SHIRLEY TO CISERVC2 CIREPTS2 1151 2 08:12:10 .002 DFHECID TEMPSTOR CACA BUFFER
CECI PO45 I1G2ZP045 MIKE T0 CISERVC2 CIREPTS2 1149 1 08:12:10 .004 DFHECID TEMPSTOR LONGTSNAME BUFFER
CECI PO45 IG2ZP045 MIKE T0 CISERVC2 CIREPTS2 1149 2 08:12:10 .004 DFHECID TEMPSTOR LONGTSNAME BUFFER
CPOO 0001 TCPOOOO1 CICSUSER TO 1238 1 14:53:19 4.103 CPATO0 TEMPSTOR CPATSQ WAIT
CPOO 0001 TCPOOOO1 CICSUSER TO 1247 1 14:55:15 24.509 CPATO0 TEMPSTOR CPATSQ WAIT

Figure 24. CICS PA: List of exceptions

Exception Summary report

The Exception Summary report summarizes the CMF exception class records by
transaction ID.

[Figure 25 on page 148|shows a sample Exception Summary report. It gives the
average and total number of exceptions for each transaction ID according to the
following exception conditions:

* Wait for auxiliary temporary storage VSAM buffer

» Wait for auxiliary temporary storage VSAM string

» Wait for Coupling Facility data table pool

* Wait for VSAM LSRPOOL buffer

* Wait for VSAM LSRPOOL string

» Wait for temporary storage

» Wait for main storage

Chapter 7. CICS Performance Analyzer for z/OS (CICS PA) 147

XSUMOOO1 Printed at 8:26:51

Tran Total
ID Excepts
ABRW 3
CEBR 16
CECI 257
TOTAL 276

2/17/2003

TS-Buffer-Wait

Average Count Average
.003

.006 256 .003
.006 256 .003

TS-String-Wait

CICs

Data from 08:08:37 2/16/2003 to 08:12:36 2/16/2003

Count Average

Figure 25. CICS PA: Summary of exceptions

Pool-Buffr-Wait Pool-Strng-Wait

Performance Analyzer

Exception Summary

Count Average Count Average

6.810

Transaction Resource Usage reports

The Transaction Resource Usage reports are produced from CMF performance
class and transaction resource class data. Currently, File and Temporary Storage
usage are the only types of transaction resource data available.

There are three reports in this category:
* The File Usage Summary report provides a detailed analysis of CMF transaction

resource class data for files.
* The Temporary Storage Usage Summary report provides a detailed analysis of

CMF transaction resource class data for temporary storage queues.

File-Strng-Wait

3

..Temp Storage.
Count Average

Count Average

..Main Storage.
Count

* The Transaction Resource Usage List report provides a detailed list of CMF
transaction resource class data. The records are reported in the sequence that
they appear in the SMF file. The report gives transaction information together

with statistics of file and/or temporary storage usage by transaction.

The Transaction File Usage Summary report like that in provides a
summary of File usage by transaction ID. For each transaction ID, it gives
Transaction Identification and File Control statistics followed by a breakdown of file
usage for each file used by the transaction.

FILEOOO1 Printed at 11:00:52 7/26/2003

Tran

STOK

STOCKF1

STOCKF2

9 Elapse Avg
Max

Count Avg
Max

#Tasks

9 Elapse Avg
Max

Count Avg
Max

9 Elapse Avg
Max

Count Avg
Max

CICS Performance Analyzer
Transaction File Usage Summary

Data from 07:30:47 5/29/2003 to 08:35:48 5/29/2003

APPLID CICSPAl

1/0 Waits #***xxx AccMeth
RLS CFDT Requests
.0000 .0000
.0000 .0000

0 0 595

0 0 4925

I/0 Waits #x***xx AccMeth

RLS CFDT Requests
.0000 0000
0000 0000

0 0 595

0 0 4925
.0000 0000
0000 0000

0 0 34

0 0 765

FC Calls
Get Put Browse Add Delete Total File
2452
1.5718
48 0 506 2 1 568 65
369 7 4354 9 4 4739 426
FC Calls
Get Put Browse Add Delete Total File
.1907 .0045 0170 0154 .0094 .2544 2452
1.4601 .0110 1195 .0458 0358 1.6370 1.5718
48 0 506 2 1 568 65
369 2 4354 8 4 4739 426
.0261 .0054 .0036 L0113 0068 L0712 .0690
.0352 .0065 .0042 0176 0098 1029 .0837
0 0 12 0 0 13 1
0 0 15 0 0 17 2

Figure 26. CICS PA: Transaction File Usage Summary report

The Transaction Temporary Storage Usage Summary report like that in
summarizes transactions that use temporary storage queues. The
report consists of Transaction Identification and Temporary Storage statistics from

148 CICS TS for z/OS: CICS Performance Guide

the CMF performance class records. In addition, there is one sub-section for each
TSQueue that the transaction has used from the CMF transaction resource class

records.

CICS Performance Analyzer
Transaction Temporary Storage Usage Summary

TEMPOOO1 Printed at 11:00:52 7/26/2003 Data from 07:30:47 5/29/2003 to 08:35:48 5/29/2003

Fkkkwkkkkkkkkx [S Calls wkkkksrsrskrsk xxx [/0 Waits ***

Tran #Tasks Get Put_Aux Put_Main Total IN Shr_TS
CECI 3 Elapse Avg .0000 L0139
Max .0000 .0139
Count Avg 2 0 6 8 0 10

Max 3 0 12 12 0 17

Fkxkrkkkkkxkkx TS Calls *kkrkxkrsrx *xx [/0 Waits ***

TSQueue #Tasks Get Put_Aux Put_Main Total TS Shr_TS
TS_Queuel 2 Elapse Avg .0104 .0000 .0002 .0106 .0000 .0139

Max .0104 .0000 .0002 .0104 .0000 .0139

Count Avg 2 0 6 8 0 10

Max 3 0 12 12 0 17

TS_Queue2 1 Elapse Avg .0104 .0000 .0002 .0000 .0000 .0139

Max .0104 .0000 .0002 .0000 .0000 .0139

Count Avg 2 0 6 8 0 104

Max 2 0 6 8 0 104

Total 2 Elapse Avg .0104 .0000 .0002 .0000 .0000 .0139

Max .0104 .0000 .0002 .0104 .0000 .0139

Count Avg 2 0 6 8 0 10

Max 3 0 12 12 0 17

skkkkkkrkkkkk TS Calls wkkkrsrskrsrsx xkx [/0 Waits ***

Tran #Tasks Get Put_Aux Put_Main Total TS Shr_TS
CEDA 9 Elapse Avg .0000 .0139
Max .0000 L0139

Count Avg 48 0 506 2 1 568

Max 369 2 4354 8 4 4739

skkkwkkkkkkkkkx S Calls #kkrkrkrkrx *xxx [/0 Waits *+*

TSQueue #Tasks Get Put_Aux Put_Main Total IN Shr_TS

TS_Queue3 9 Elapse Avg .0104 .0000 .0002 .0106 .0000 L0139

Max .0104 .0000 .0002 .0104 .0000 .0139

Count Avg 2 0 6 8 0 10

Max 3 0 12 12 0 17

Figure 27. CICS PA: Transaction Temporary Storage Usage Summary report

DB2 report

APPLID CICSPAl

Length

Length

Length

Length

*kkkkkkx TS THem *xxxxkkss

Get Put_Aux

56 44
112 88
56 44
112 88
56 44
112 88

Put_Main

378
756

378
756

378
756

*kkxxkkkx [S [tem #xxxkrxsx

Get Put_Aux

56 44
112 88

Put_Main

378
756

The DB2 Report processes CICS CMF records and DB2 accounting records to
produce a consolidated and detailed view of DB2 usage by your CICS systems. It
enables you to view CICS and DB2 resource usage statistics together in a single

report.

The DB2 List report in[Figure 28 on page 150| shows detailed information of DB2
activity for each transaction. The DB2 Summary report summarizes the DB2 activity

by transaction and program within APPLID.

The DB2 Report matches CMF Performance records with DB2 accounting records
by Network unit-of-work id. Your CICS-DB2 resources must be defined with
ACCOUNTREC(TASK) or ACCOUNTREC(UOW) for matching to occur. See the
CICS DB2 Guide for more information on accounting for DB2 resources and the

setup required.

Chapter 7. CICS Performance Analyzer for zOS (CICS PA) 149

DB2ROOO1 Printed at 14:

Tran/ Userid/
SSID Authid

CRD8 CICSUSER
CRD5 CICSUSER
CRDD CICSUSER

DB2P CICSUSER

DB2P CICSUSER

Figure 28. CICS PA:

DB2ROOO1 Printed at 14:

Program/
Planname

CORDO8BP
CORDO5P
CORD13P

CPAPLAN

CPAPLAN

Tran/ Program/ #Tasks/

SSID Planname #Threads

CRD5 CORDO5P

DB2P CPAPLAN

CICS Performance Analyzer

Figure 28. CICS PA: DB2 accounting for CICS transactions (Part 2 of 2)

WebSphere MQ report

The WebSphere MQ report processes WebSphere MQ SMF accounting (SMF 116)

DB2 - List
22:11 2/05/2003 Data from 15:41:19 1/12/2003 to 16:19:15 1/12/2003
UOW R ..DB2 Wait Time.. DB2 User CPU Response
APPLID Task Seq T Term LUName Connect Thread ReqCnt Time Start Time Stop Time Time
CICPAOR1 53 2 T <AAK CICPTOR1 .0000 .0000 22 .0185 15:49:40.023 15:49:40.105 .0827
CICPAOR1 52 2 T <AAK CICPTOR1 .0000 .0000 12 L0137 15:49:39.960 15:49:40.016 .0566
CICPTOR1 45 1 T 0013 TCP0OOO13 N/A N/A 0 .0390 15:49:39.521 15:49:40.121 .6006
CICPAOR1 52 Thread Identification ID=POOLCRD50001 NETName=P390.TCP00013 UOWID=1F7D3A6472BA
Begin Time: 15:49:39.969 1/12/63 End Time: 15:49:40.007 1/12/03
Classl: Thread Time Elapsed= .0379 CPU= .019536
Class2: In-DB2 Time Elapsed= .0184 CPU= .014040
Class3: Suspend Time Total = N/P 1/0= N/P Lock/Latch= N/P Other= N/P
Buffer Manager Summary GtPgRqg= 2 SyPgUp= 0
Locking Summary Suspnd= 0 DeadlLk= 0 TmeOut= 0 MxPgLk= 1
SQL DML Query/Update Sel= 0 Ins= 0 Upd= 0 Del= 0
SQL DML 'Other' Des= 0 Pre= 0 Ope= 1 Fet= 10 Clo=
CICPAOR1 53 Thread Identification ID=POOLCRD50001 NETName=P390.TCP00013 UOWID=1F7D3A6472BA
Begin Time: 15:49:40.032 1/12/63 End Time: 15:49:40.097 1/12/03
Classl: Thread Time Elapsed= .0654 CPU= .031185
Class2: In-DB2 Time Elapsed= .0231 CPU= .021452
Class3: Suspend Time Total = N/P 1/0= N/P Lock/Latch= N/P Other= N/P
Buffer Manager Summary GtPgRq= 2 SyPgUp= 0
Locking Summary Suspnd= 0 DeadlLk= 0 TmeOut= 0 MxPglLk= 1
SQL DML Query/Update Sel= 0 Ins= 0 Upd= 0 Del= 0
SQL DML 'Other' Des= 0 Pre= 0 Ope= 1 Fet= 20 Clo=
DB2 accounting for CICS transactions (Part 1 of 2)
CICS Performance Analyzer
DB2 - Summary
22:11 2/05/2003 Data from 15:41:19 1/12/2003 to 16:19:15 1/12/2003 APPLID CICPAOR1
Avg Max Avg Max Avg Max Avg Max Avg Max
DB2ConWt DB2ConWt DB2ThdWt DB2ThdWt DB2Rqst DB2Rgst UserCPU UserCPU Response Response #Abends
Time Time Time Time Count Count Time Time Time Time
.0000 .0000 .0000 .0000 16.0 24 .016544 .021648 .0721 .0942 0
6 Thread Utilization Entry= 0 Pool= 6 Command= 0
Classl: Thread Time Avg: Elapsed= .0534 CPU= .024245
Max: Elapsed= .0733 CPU= .033569
Class2: In-DB2 Time Avg: Elapsed= .0189 CPU= .016890
Max: Elapsed= .0236 CPU= .022496
Class3: Suspend Time Avg: Total = N/P 1/0= N/P Lock/Latch= N/P Other= N/P
Max: Total = N/P 1/0= N/P Lock/Latch= N/P Other= N/P
Buffer Manager Summary Avg: GtPgRqg= 2.0 SyPgUp= .0
Max: GtPgRg= 2 SyPgUp= 0
Locking Summary Avg: Suspnd= .0 DeadLk= .0 TmeQut= .0 MxPgLk= 1.0
Max: Suspnd= 0 DeadlLk= 0 TmeOut= 0 MxPgLk= 1
SQL DML Query/Update Avg: Sel= .0 Ins= .0 Upd= .0 Del= .0
Max: Sel= 0 Ins= 0 Upd= 0 Del= 0
SQL DML 'Other' Avg: Des= .0 Pre= .0 Ope= 1.3 Fet= 13.3 Clo= 1.3
Max: Des= 0 Pre= 0 Ope= 2 Fet= 20 Clo= 2

records to produce a detailed view of WebSphere MQ usage by your CICS

systems.

The WebSphere MQ List reports display, depending on the WebSphere MQ
accounting traces that are active, details about transactions, WebSphere MQ
queues that were referenced, WebSphere MQ global (not transaction-specific or
queue-specific) statistics and WebSphere queue-specific commands issued by
transactions. These can be sorted and aggregated by any one of the following:

* by transaction ID

150 CICS TS for z/0S: CICS Performance Guide

A
B

* by queue name
* by transaction ID, then queue name
* by queue name, then transaction 1D

WebSphere MQ accounting records are produced when the Accounting Trace
component of WebSphere MQ is activated. If the MQ accounting trace is active,
CLASS(1) subtype 0 records are always produced, but subtypes 1 and 2 are only
produced if CLASS(3) is specified when the trace is activated. You can request
reports for either Class 1 or Class 3 data.

The WebSphere MQ Class 1 List report like that in provides a detailed list
of MQ accounting class 1 records.

CICS Performance Analyzer
WebSphere MQ Class 1 List

MQO0OOO1 Printed at 14:42:16 8/13/2003 Data from 14:50:34 07/13/2003

SSID APPLID Tran Time Task CPU —=mmmmmmmmmeee GET Counts ===-==cmmmmmm mmmmmmeeee oo PUTx Counts =--=-=--==-----

<=99 <=999 <=9999 >=10000 <=99 <=999 <=9999 >=10000
MQMD CICS53A1 CKCN 14:50:34.88 35 0.000747 0 0 0 0 0 0 0 0
MQMD CICS53A1 MQA1 14:51:13.27 41 0.064342 0 0 0 0 60 0 0 0
MQMD CICS53A1 CKTI 14:51:24.52 37 0.001541 0 0 0 0 0 0 0 0

Figure 29. WebSphere MQ Class 1 List report

The WebSphere MQ Class 1 Summary report like that in [Figure 30| provides a
summary of MQ accounting class 1 records.

CICS Performance Analyzer
WebSphere MQ Class 1 Summary

MQO0O0O3 Printed at 14:42:16 8/13/2003 Data from 14:50:34 07/13/2003 to 14:51:24 07/13/2003

----- Average ----- --------- Average GET Counts --------- -------- Average PUTx Counts ---------
SSID APPLID TRAN Count CPU Calls <=99 <=999 <=9999 >=10000 <=99 <=999 <=9999 >=10000
MQMD CICS53A1 CKCN 1 0.000747 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MQMD CICS53A1 CKTI 1 0.001541 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MQMD CICS53A1 MQAl 1 0.064342 60.0 0.0 0.0 0.0 0.0 60.0 0.0 0.0 0.0

Figure 30. WebSphere MQ Class 1 Summary report

The WebSphere MQ Class 3 List report like that in [Figure 31 on page 152| provides
a detailed list of MQ accounting class 3 records.

Chapter 7. CICS Performance Analyzer for z/OS (CICS PA) 151

CICS Performance Analyzer
WebSphere MQ Class 3 List

MQO00002 Printed at 14:42:16 8/13/2003 Data from 14:51:13 07/13/2003

SSID: MQMD APPLID: CICS53A1 Tran: MQAl Task: 41 UserID: CICSUSER NetName: N/A UOWID: N/A
Channel: Channel Connection: Start: 07/13/2003 14:51:13.12
Other Total Calls 1 Avg Elapsed 0.018721 Avg CPU 0.000258
#01d Pages 120 #New Pages 0

Queue: CPPX.MQS520.TEST.TEMPQUEUE.060
QType: LOCAL IType: NONE GDisp: Q_MGR Date: 07/13/2003 Time: 14:51:13 P/Set No: 4 BufferPool No: 3
First Opened: 07/13/2003 14:51:13.25 Last Closed: 07/13/2003 14:51:13.25 CF Structure Name:

Count Elapsed CPU Susp Elp JnlWrt Elp PS Req's PS Rd Elp Expired Page Skip Msgs Skip
OPEN 1 0.000332 0.000327
CLOSE 1 0.000113 0.000112
PUT 1 0.000567 0.000560 0.000000 0.000000 0.0 0.000000
PUT Total Bytes 10 #PUT w/Data 1 Min Msg Size 10 Max Msg Siz 10

Queue: CPPX.MQS520.TEST.TEMPQUEUE.059
QType: LOCAL IType: NONE GDisp: Q_MGR Date: 07/13/2003 Time: 14:51:13 P/Set No: 4 BufferPool No: 3
First Opened: 07/13/2003 14:51:13.25 Last Closed: 07/13/2003 14:51:13.25 CF Structure Name:

Count Elapsed CPU Susp Elp JnlWrt Elp PS Req's PS Rd Elp Expired Page Skip Msgs Skip
OPEN 1 0.000271 0.000267
CLOSE 1 0.000113 0.000112
PUT 1 0.000507 0.000500 ©.000000 0.000000 0.0 0.000000
PUT Total Bytes 10 #PUT w/Data 1 Min Msg Size 10 Max Msg Siz 10

Figure 31. CICS PA: WebSphere MQ Class 3 List report

The WebSphere MQ Class 3 Summary report provides a summary of MQ
accounting class 3 records. shows an example of the report sorted by
transaction ID, then queue name.

CICS Performance Analyzer
WebSphere MQ Class 3 Summary (By TRAN,QUEUE)

MQO000O6 Printed at 14:42:16 8/13/2003 Data from 14:50:34 07/13/2003 to 14:51:24 07/13/2003

SSID: MQMD APPLID: CICS53A1 Tran: CKTI Threads: 1
Other Avg Count 1.0 Avg Elapsed 0.000895 Avg CPU 0.000370
SSID: MQMD APPLID: CICS53A1 Tran: MQAl Threads: 1
Other Avg Count 1.0 Avg Elapsed 0.018721 Avg CPU 0.000258
Avg #01d Pages 120.0 Avg #New Pages 0.0
Queue: CPPX.MQS520.TEST.TEMPQUEUE.001
QType: LOCAL IType: NONE GDisp: Q_MGR QCount: 1
Count Elapsed CPU Susp Elp JnlWrt Elp PS Req's PS Rd Elp Expired Page Skip Msgs Skip
OPEN 1.0 0.000480 0.000472
CLOSE 1.0 0.000122 0.000121
PUT 1.0 0.000657 0.000562 0.000000 0.000000 0.0 0.000000 0.0 0.0 0.0
PUT Avg Bytes 10.0 Avg #PUT w/Data 1.0 Min Msg Size 10 Max Msg Size 10

Figure 32. CICS PA: WebSphere MQ Class 3 Summary report

System Logger report

The System Logger Report processes System Logger records to provide
information on the System Logger logstreams and coupling facility structures that
are used by CICS Transaction Server for logging, recovery and backout operations.
The report can assist with measuring the effects of tuning changes and identifying
logstream or structure performance problems.

152 CICS TS for z/OS: CICS Performance Guide

The System Logger List report shows information on logstream writes, deletes, and

events, as well as Structure Alter events for each SMF recording interval. The

System Logger Summary report summarizes logstream and structure statistics so
you can measure Logger performance over a longer period of time. Sample System
Logger reports are shown in [Figure 33.

These reports, when used in conjunction with the CICS Logger reports produced

from the standard CICS statistics reporting utilities, provide a comprehensive

analysis of the logstream activity for all your CICS systems.

LOGROOO1 Printed at

9:30:09 2/11/2003

CICS Performance Analyzer

System Logger

Report - List

Data from 7:00:40:14

Logstream name Structure name Flag
IYOT1.DFHLOG L0G_JG Staging
----------- IXGWRITES ---------- e
Average Bytes With
Total Buffer Writn to DASD
Count Bytes Size Int Stor Write
11248 4348827 386 6768128 0
Demand
Staging DASD Staging Entry
0ffloads Threshld Shifts Full Full
3 0 0 0 0
---------------------- EVENTS =--mmmmmmmmmmmmm oo
Struct Struct
Rebuilds Rebuilds
Typel Type2 Type3 Init'd Complt'd
11216 32 0 0 0
Logstream name Structure name MVSID
ALTER LOG_JG MV55
------------ STRUCTURE ALTER -=---mmmmmmemo
SMF record timestamp 9:36:38:05 1/20/2003
Current 0ffloads Current Targeted Struct
Bytes Avg Avg Size
Written Bufsz Bufsz (Blocks)
0 2 768 768 5056

1/20/2003 to 9:59:40:16

Interval expired at

09:00:00:00 1/20/2003 MV55
-------- DELETIONS ====-=--------oou
Bytes Bytes
Without After Int Stor
DASD 0ffload w/o DASD
Write w. DASD Write
9327 0 3348643
Demand Minimum
Struct Init'd Block
Full 0ffloads Length
0 0 116
-------------- DASD Writes -------
Total
Count Bytes Average
0 0 0
Level
SP6.0.8
Log Log
Data Streams
Writes Connectd
0 0

Figure 33. CICS PA: System Logger performance and tuning (Part 1 of 2)

Chapter 7. CICS Performance Analyzer for z/OS (CICS PA)

1/20/2003

MVSID

Level
SP6.0.8

Maximum
Block
Length

153

CICS Performance Analyzer
System Logger Report - Logstream Summary

LOGROOO1 Printed at 9:30:09 2/11/2003 Data from 7:00:40:14 1/20/2003 to 9:59:40:16 1/20/2003

Logstream name
IYOT1.IYO1.DFHJO3

No

Total 45
Rate(/Sec) 0
Minimum 45
Maximum 45
0ffloads

Total 2
Rate(/Sec) 0
Minimum 2
Maximum 2
Typel

Total 0
Rate(/Sec) 0
Minimum 0
Maximum 0

Structure name Start of Interval End of Interval Interval MVSID
DASDONLY 06:45:00:00 1/20/2003 09:00:00:00 1/20/2003 02:15:00 MV55
IXGWRITES ---------= e DELETIONS --=--=--mmmmm--—-
No. No. Bytes Bytes
Bytes With Without After Int Stor
Total Avg Writn to DASD DASD 0ffload w/o DASD
Bytes Bytes Int Stor Write Write w. DASD Write
2506582 55702 2543616 20 0 1130496 0
309 314 0 0 140 0
2506582 2543616 20 0 1130496 0
2506582 2543616 20 0 1130496 0
---------------------- EVENTS === oo o e e e e e e e e e e e
Demand Demand
Staging DASD Block Staging Entry Struct Init'd

Threshld Shifts Length Full Full Full 0ffloads
6 6 0 0 0 0
0 0 0 0 0 0
0 6 16998 0 0 0 0
0 6 65372 0 0 0 0

---------- EVENTS =----mmmmmmmmmmmmmmmmm - -------——————- DASD Writes -----------------

Struct Struct
Rebuilds Rebuilds Total

Type2 Type3 Init'd Complt'd No. Bytes Avg Waits

0 0 0 0 8 1114992 0 0

0 0 0 0 0 138 0

0 0 0 0 8 1114992 0

0 0 0 0 8 1114992 0

Figure 33. CICS PA: System Logger performance and tuning (Part 2 of 2)

The CICS PA Historical Database (HDB)

Historical Database (HDB) is a facility that allows you to manage performance data
for your CICS transactions. HDBs save performance data in data sets that are
managed from the dialog. The type of information and level of detail contained in an
HDB is determined by user-defined templates.

There are two types of HDB:

List HDB
In a List HDB data set, one record represents one transaction. Typically,
List HDBs are used to analyze recent transaction events. Data is usually
only required for a short period of time.

Summary HDB
In a Summary HDB data set, one record represents a summary of
transaction activity over a user-specified time interval. Typically, Summary
HDBs are used for long-term trend analysis and capacity planning. Data is
retained for a longer period of time, sometimes years.

You can run reports against your HDB or export the HDB data to DB2 tables.

SQL query for a Summary HDB
Summary tables contain data exported from a Summary HDB. Summary tables are
the most commonly used for performance reporting.

Here is an example of a simple SQL query that lists selected fields in a Summary
table:

154 CICS TS for /OS: CICS Performance Guide

SELECT TRAN,

INT (TASKCNT) AS TASKCNT,
DEC(RESPONSE_TIME,8,2) AS RESPONSE_TIME,
DEC(CPU_TIME,8,2) AS CPU_TIME,
DEC(SUSPEND_TIME,8,2) AS SUSPEND_TIME,

DEC(DISPATCH_TIME,8,2) AS DISPATCH_TIME
FROM CICSPA.CICSPI1H

This query produces output like the following:

RESPONSE CPU SUSPEND DISPATCH
TRAN TASKCNT TIME TIME TIME TIME
CsoL 1 1887.43 16.00 9.00 16.00
CSMT 1 1887.22 16.00 9.00 16.00
FICX 1 0.00 1.00 1.00 1.00
Su4B 1 0.07 625.00 625.00 625.00
CWBG 1 0.00 1.00 1.00 1.00
BIC2 1 0.00 1.00 1.00 1.00
BIC2 1 0.00 1.00 1.00 1.00
AP77 1 1.17 3969.00 3969.00 3969.00
CAMA 1 0.01 25.00 25.00 25.00
CKPT 4 0.56 2313.00 2313.00 2313.00
CM99 1 0.01 1.00 1.00 1.00
CNA7 9 0.47 180.00 180.00 180.00
CNBO 3 0.17 891.00 891.00 891.00

Figure 34. CICS PA: Simple SQL query against Summary HDB DBZ2 table

For more information about CICS Performance Analyzer for z/OS, see the CICS
Performance Analyzer for z/0S Report Reference (SC34-6308).

Chapter 7. CICS Performance Analyzer for z/OS (CICS PA) 155

156 CICS TS for z/0S: CICS Performance Guide

Chapter 8. Tivoli Decision Support for z/0S

Tivoli Decision Support for z/OS, previously known as Tivoli Performance Reporter
for OS/390, supersedes Service Level Reporter (SLR).

Tivoli Decision Support for z/OS is a reporting system which uses DB2. You can
use it to process utilization and throughput statistics written to log data sets by
computer systems. You can use it to analyze and store the data into DB2, and
present it in a variety of forms. Tivoli Decision Support consists of a base product
with several optional features that are used in systems management, as shown in

CICS

Table 8. Tivoli Decision Support for z/OS and optional features
IMS Network System Workstation AS/400° Accounting
Performance Performance Performance Performance Performance

Performance

Tivoli Decision Support for z/OS Base

© Copyright IBM Corp. 1983, 2011

The Tivoli Decision Support for z/OS base includes:

* Reporting and administration dialogs that use the Interactive System Productivity
Facility (ISPF)

* A collector function to read log data, with its own language
* Record mapping (definitions) for all data records used by the features

Each feature provides:

* Instructions (in the collector language) to transfer log data to DATABASE 2
(DB2) tables

« DB2 table definitions
* Reports.

The Tivoli Decision Support for z/OS database can contain data from many
sources. For example, data from System Management Facilities (SMF), Resource
Measurement Facility (RMF), CICS, and Information Management System (IMS)
can be consolidated into a single report. In fact, you can define any non-standard
log data to Tivoli Decision Support for z/OS and report on that data together with
data coming from the standard sources.

The Tivoli Decision Support for z/OS CICS performance feature provides reports for
your use when analyzing the performance of CICS Transaction Server and
CICS/ESA, based on data from the CICS monitoring facility (CMF) and CICS
statistics. These are some of the areas that Tivoli Decision Support can report on:
* Response times

* Resource usage

* Processor usage

» Storage usage

* Volumes and throughput

» CICS/DB2 activity

» Exceptions and incidents

» Data from connected regions, using the unit of work as key

* CICS availability

» CICS resource availability

157

The Tivoli Decision Support for z/OS CICS performance feature collects only the
data required to meet CICS users’ needs. You can combine that data with more
data (called environment data), and present it in a variety of reports. Tivoli Decision
Support for z/OS provides an administration dialog for maintaining environment
data.

Figure 35|illustrates how data is organized for presentation in Tivoli Decision
Support z/OS reports.

Operating system

L |

System data

3 Data written to
Logs various logs
3 Decision Support
Decision — collects only
CICS Decision relevant data
Support
performance records
feature
User-supplied
Decision User- environment data
Support supplied maintained in the
tables data Decision Support
database
A 3 Required data
Report Report Report presented in
report format

Figure 35. Organizing and presenting system performance data

The Tivoli Decision Support for z/OS CICS performance feature processes these

records:
CMF

CICS Transaction Server performance

CICS Transaction Server exceptions

CICS/ESA performance

CICS/ESA exceptions

CICS/MVS accounting, performance and exceptions
Statistics

158 CICS TS for 2/0S: CICS Performance Guide

CICS Transaction Server statistics
CICS/ESA statistics

For more information on using Tivoli Decision Support for z/OS with CICS, see
|"Using Tivoli Decision Support for z/OS to report on CICS performance.”|

Using Tivoli Decision Support for z/OS to report on CICS performance

To understand performance data, you must first understand the work CICS performs
at your installation. Analyze the work by its basic building blocks: transactions.
Group the transactions into categories of similar resource or user requirements and
describe each category’s characteristics. Understand the work that CICS performs
for each transaction and the volume of transactions expected during any given
period. Tivoli Decision Support for zOS can show you various types of data for the
transactions processed by CICS.

A service-level agreement for a CICS user group defines commitments in several
areas of quantifiable CICS-related resources and services. CICS service
commitments can belong to one of these areas:

* Response times

* Transaction counts

» Exceptions and incidents

* Availability.

The following sections describe certain issues and concerns associated with
systems management and how you can use the Tivoli Decision Support for z/OS
CICS performance feature.

Monitoring response time

Use the Tivoli Decision Support for z/OS CICS response-time reports to see the
CICS application internal response times.

Figure 36|shows the elements of the internal response times.

@i Response HME - e »
[I
o . . . %)
< «<--Suspendtime ---p €. c-nne Dispatch time - -+« vvvuvnt > =
»n T
I Service time------- »

Figure 36. CICS internal response-time elements

As described in Decision Support Network Performance Feature Reports, the
Network Performance feature generates reports that show the total, end-to-end
average response time (operator transit time) for VTAM applications (for example, a
CICS region) by logical unit. The operator transit time consists of the host transit
time and the network transit time, which are also shown in the Network
Performance feature reports. Using these reports, you can isolate a response-time
problem either to the network or to CICS and act on it accordingly. Should the
problem be in CICS, you can use the Tivoli Decision Support for z/OS CICS
performance feature reports to identify the application causing the response-time
degradation.

Chapter 8. Tivoli Decision Support for z0S 159

Monitoring processor and storage use

Poor response time usually indicates inefficient use of either the processor or
storage (or both). Tivoli Decision Support-supplied reports can help you isolate a
resource as the cause of a CICS performance problem.

If both the Tivoli Decision Support for z/OS CICS performance feature’s statistics
component and the Decision Support System Performance feature’s MVS
component are installed and active, these reports are available for analyzing
transaction rates and processor use by CICS region:

* The CICS Transaction Processor Utilization, Monthly report shows monthly
averages for the dates you specify.

» The CICS Transaction Processor Utilization, Daily report shows daily averages
for the dates you specify.

Tivoli Decision Support for z/OS produces several reports that can help analyze
storage usage. For example, the CICS Dynamic Storage (DSA) Usage report,
shows pagepool usage, under the headings 'Pagepool name', 'DSA (bytes)',
‘Cushion (bytes)', 'Free storage (bytes)', 'Free storage (pct)', 'Largest free area/,
'‘Getmains', and 'Freemains'.

CICS Dynamic Storage (DSA) Usage
MVS ID ='Mv28' CICS ID ="IYCSCTSK'
Date: '2001-01-17' to '2001-01-18'

Free Free Largest

Pagepool DSA Cushion storage storage free

name (bytes) (bytes) (bytes) (pct) area Getmains Freemains
CDSA 524288 65536 299008 57 245760 2668 2470
ECDSA 5242880 131072 1122304 21 868352 1084154 1067000
ERDSA 11534336 262144 1130496 9 966656 710 16
ESDSA 0 0 0 0 0 0 0
EUDSA 2097152 0 2097152 100 1048576 73620 73620
RDSA 524288 65536 204800 39 122880 40 0
SDSA 262114 65536 249856 95 249856 12 6
UDSA 524288 65536 524288 100 262114 301922 301922

Tivoli Decision Support Report: CICS809

Figure 37. CICS Dynamic storage (DSA) usage report

Monitoring volumes and throughput

Because CICS Transaction Server for z/OS uses an MVS subtask to page and
because an MVS page-in causes an MVS task to halt execution, the number of
page-ins is a performance concern. Page-outs are not a concern because
page-outs are scheduled to occur during lulls in CICS processing. If you suspect
that a performance problem is related to excessive paging, you can use Tivoli
Decision Support for z/OS to report on page-ins, using RMF data.

The best indicator of a transaction’s performance is its response. For each
transaction ID, the CICS transaction performance detail report (in|Figure 38 on page|
161)) shows the total transaction count and the average response time. The
headings are "Tran ID', "Tran count', 'Average resp time (sec)', '‘Average CPU time
(sec)', 'Prog load regs (avg)', 'FC calls (avg)', 'Exceptions', 'Program storage bytes
(max)', 'Getmains < 16MB (avg)', and 'Getmains > 16MB (avg).".

160 CICS TS for z/0S: CICS Performance Guide

CICS Transaction Performance, Detail
MVS ID ='MV28' CICS ID ='IYCSCTSK
Date: '2001-01-17' to '2001-01-18'

Avg Avg Prog Program

resp CPU load Prog FC storage Getmains Getmains
Tran Tran time time reqs Tloads calls Excep- bytes < 16 MB > 16 MB
i) count (sec) (sec) (avg) (avg) (avg) tions (max) (avg) (avg
QuIT 7916 0.085 0.017 0 0 18 0 74344 22 0
CRTE 1760 4.847 0.004 0 0 0 0 210176 1 0
APOO 1750 0.184 0.036 0 0 8 0 309800 66 0
PM94 1369 0.086 0.012 0 0 6 0 130096 24 0
VCs1 737 0.073 0.008 2 0 7 0 81200 14 0
PM8O 666 1.053 0.155 1 0 62 0 104568 583 0
CESN 618 8.800 0.001 0 0 0 0 41608 0 0
sue1 487 0.441 0.062 4 0 126 0 177536 38 0
GC11 1 0.341 0.014 1 0 2 0 37048 10 0
DMO8 1 0.028 0.002 0 0 0 0 5040 3 0
20359 309800

Tivoli Decision Support Report: CICS101

Figure 38. CICS transaction performance, detail report

Use this report to start verifying that you are meeting service-level objectives. First,
verify that the values for average response time are acceptable. Then check that
the transaction counts do not exceed agreed-to limits. If a transaction is not
receiving the appropriate level of service, you must determine the cause of the
delay.

Combining CICS and DB2 performance data

For each CICS task, CICS generates an LU6.2 unit-of-work ID. DB2 also creates an
LUB.2 unit-of-work ID.

Figure 39|shows how DB2 data can be correlated with CICS performance data
using the DB2 token (QWHCTOKN) to identify the task.

DB2 accounting record

| QWHCTOKN

|
I

A

CICS performance-monitoring record

TRAN USERID NETNAME UOWID TCIOWT

Figure 39. Correlating a CICS performance-monitoring record with a DB2 accounting record

If you match the NETUOWPX and NETUOWSKX fields in a CICS record to the DB2
token, you can create reports that show the DB2 activity caused by a CICS
transaction.

Chapter 8. Tivoli Decision Support for z0S 161

Monitoring exception and incident data

An exception is an event that you should monitor. An exception appears in a report
only if it has occurred; reports do not show null counts. A single exception need not
be a cause for alarm. An incident is defined as an exception with severity 1, 2, or 3.

The Tivoli Decision Support for z/OS CICS performance feature creates exception
records for these incidents and exceptions:

» Wait for storage

» Wait for main temporary storage

* Wait for a file string

» Wait for a file buffer

» Wait for an auxiliary temporary storage string

» Wait for an auxiliary temporary storage buffer

» Transaction ABEND

» System ABEND

« Storage violations

» Short-of-storage conditions

* VTAM request rejections

* |/O errors on auxiliary temporary storage

* 1/O errors on the intrapartition transient data set

» Autoinstall errors

* MXT reached

* Link errors for IRC and ISC

* Log stream buffer-full conditions

* CREAD and CWRITE fails (data space problems)
* Local shared resource (LSR) pool (string waits)
» Waits for a buffer in the LSR pool

* Errors writing to SMF

* No space on transient-data data set

» Waits for a transient-data string

» Waits for a transient-data buffer

» Transaction restarts

* Maximum number of tasks in a transaction class reached (CMXT)
* Transmission errors

Figure 40|shows an example of an incidents report, giving information on 'Severity',
‘Date’, 'Time', "Terminal operator ID', 'User ID', 'Exception ID', and 'Exception

L g
description'.
CICS Incidents
DATE: '2001-01-17' to '2001-01-18'

Terminal

operator User Exception Exception
Sev Date Time 1D D D description
03 2001-01-17 15.42.03 SYSTEM TRANSACTION_ABEND CICS TRANSACTION ABEND AZTS
03 2001-01-18 00.00.00 SYSTEM TRANSACTION_ABEND CICS TRANSACTION ABEND APCT
03 2001-01-18 17.37.28 SYSTEM SHORT_OF_STORAGE ~ CICS SOS IN PAGEPOOL
03 2001-01-18 17.45.03 SYSTEM SHORT_OF_STORAGE ~ CICS SOS IN PAGEPOOL

Tivoli Decision Support report: CICS002

Figure 40. Example of a Tivoli Decision Support CICS incidents report

Tivoli Decision Support for z/OS can pass the exceptions to an
Information/Management system.

Unit-of-work reporting

In a CICS multiple region operation (MRO) or intersystem communication (ISC)
environment, you can trace a transaction as it migrates from one region (or
processor complex) to another and back. The data lets you determine the total

162 CICS TS for z/OS: CICS Performance Guide

resource requirements of the combined transaction as a unit of work, without having
to separately analyze the component transactions in each region. The ability to
combine the component transactions of an MRO or ISC series makes possible
precise resource accounting and chargeback, and capacity and performance
analysis.

The CICS UOW Response Times report in shows an example of how
Tivoli Decision Support for z/OS presents CICS unit- of-work response times. The
headings are 'Adjusted UOW start time', 'Tran ID', 'CICS ID', 'Program name', 'UOW
tran count', and 'Response time (sec)'.

CICS UOW Response Times
Time: '09.59.00' to '10.00.00
Date: 2001-01-18

Adjusted
uow UOW Response
start Tran CICS Program tran time
time D D name count (sec)

09.59.25 0P22 CICSPROD DFHAPRT 2 0.436
0P22 CICSPRDC OEPCPI22

09.59.26 AP63 CICSPRDE APPMOO 2 0.045
AP63 CICSPROD DFHAPRT

09.59.26 ARUS CICSPROD DFHAPRT 3 0.158
CSM5 CICSPRDB DFHMIRS
ARUS CICSPRDC AR49000

09.59.27 CSM5 CICSPRDB DFHMIRS 4 0.639
CSM5 CICSPRDB DFHMIRS

MQO1 CICSPROD DFHAPRT
MQO1 CICSPRDD CMQOO1

Tivoli Decision Support report: CICS902

Figure 41. Tivoli Decision Support for z/ OS CICS UOW response times report

Monitoring availability
Users of CICS applications depend on the availability of several types of resources:

» Central site hardware and the operating system environment in which the CICS
region runs

» Network hardware, such as communication controllers, teleprocessing lines, and
terminals through which users access the CICS region

» CICS region

» Application programs and data. Application programs can be distributed among
several CICS regions.

In some cases, an application depends on the availability of many resources of the
same and of different types, so reporting on availability requires a complex analysis
of data from different sources. Tivoli Decision Support for z/OS can help you,
because all the data is in one database.

CICS workload activity reporting

CICS records at the end of each transaction:
e Transaction ID

* Associated terminal ID

* Elapsed time

This is useful when you require only transaction statistics, rather than the detailed
information that CMF produces. In many cases, it may be sufficient to process only
this data, since RMF records it as part of its SMF type-72 record. Analysis (and
even recording) of SMF records from CMF can then be reserved for those

Chapter 8. Tivoli Decision Support for z0S 163

Response Time (sec)

circumstances when the detailed data is needed. Use the MVS Performance
Management (MVSPM) component of the System Performance feature of Tivoli
Decision Support to report on this data.

When running under goal mode in MVS 5.1.0 and later, CICS performance can be
reported in workload groups, service classes, and periods. These are a few
examples of Tivoli Decision Support reports for CICS in this environment.
shows how service classes were served by other service classes. This report is
available only when the MVS system is running in goal mode. The headings are
‘Workload group', 'Service class', 'Served class', 'No of times served', 'No of
transactions', and 'No of times served per transaction'.

MVSPM Served Service Classes, Overview
Sysplex: 'SYSPLEX1' System: IP02
Date: '2001-01-18' Period: 'PRIME

Workload Service Served No of times No of No of times
group class class served tx's served per tx
CIcs CICSREGS CICS-1 15227 664 22.9
CICS-2 6405 215 29.8
CICS-3 24992 1251 20.0
CICS-4 87155 1501 58.1
7.3

CICSTRX 67769 9314

Tivoli Decision Support report: MVSPM79

Figure 42. Example of an MVS Performance Management served service classes overview
report

Figure 43|shows the average transaction response time trend and how the various
transaction states contribute to it.

Response
2.50 — | | O time (s)
Active
2.00— ‘ = Ready
| ‘ Idle
| | 7 .
1.50 Lock wait
; § T vo wait
| : S8 Conv wait
100 L
™7 Distr wait
[] Syspl wait
o D Timer wait
Other wait
o1 1 1T T 1T T T T T] i Misc wait
800 900 1000 11.00 1200 1300 1400 1500 1600 17.00 18.00

Time of Day

Figure 43. Example of an MVS Performance Management response time breakdown, hourly trend report

Note that the times shown for the various transaction states are calculated based
on transaction state samples, and so are not necessarily a precise record of the
time spent in each state. Adding together the time spent in each of the transaction
states (the shaded areas on the graph) gives the average execution time, which is
lower than the average response time (the line on the graph). The difference

164 CICS TS for z/OS: CICS Performance Guide

between the response time and the execution time is mainly made up of switch time
— for example, the time the transactions spend being routed to another region for
processing.

This report is available when the MVS system is running in goal mode and when
the subsystem is CICS or IMS.

shows how much the various transaction states contribute to the average
response time. This report is available when the MVS system is running in goal
mode and when the subsystem is CICS or IMS. The report gives information on
‘Workload group', 'Service class/Period', 'Ph’, 'MVS sys ID', and 'Total state’,
followed by the percentage of response time spent in each of the states listed in
[Figure 43 on page 164}

MVSPM Response Time Breakdown, Overview
Sysplex: 'SYSPLEX1' Subsystem: IP02
Date: '2001-01-18' Period: 'PRIME'

Service MVS Total Activ Ready Idle Lock I/0 Conv Distr Local Netw Syspl Timer Other Misc
Workload class sys state state state state wait wait wait wait wait wait wait wait wait wait
group /Period Ph ID (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

CICS CICS-1 /1 BTE CA® 6.6 0.0 0.0 0.0 0.0 0.6 6.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C80 29.4 0.0 0.6 0.0 0.0 0.0 14.7 0.0 0.0 0.0 0.0 0.0 14.6 0.0
€90 3.8 0.4 1.3 1.5 0.0 0.2 0.5 0.0 0.6 0.0 0.0 0.0 0.0 0.0

/1 EXE CAO 16.6 6.1 0.2 0.1 0.0 15.5 0.6 0.0 0.6 0.6 0.0 0.6 0.1 0.0
c80 14.9 6.1 0.1 0.1 0.0 3.7 0.6 0.0 0.6 0.0 0.0 0.0 11.0 0.0
C90 14.0 1.6 4.5 4.8 0.0 3.2 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0

IMS IMS-1 /1 EXE CAO 20.7 0.4 0.7 0.0 0.0 0.0 19.6 0.0 0.0 0.6 0.6 0.0 0.0 0.0
€80 .1 0.2 0.1 0.7 6.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
90 22.2 5.3 11.9 1.2 0.0 0.2 3.6 0.0 0.6 0.0 0.0 0.0 0.0 0.0

Tivoli Decision Support report: MVSPM73

Figure 44. Example of an MVS Performance Management response time breakdown overview report

Chapter 8. Tivoli Decision Support for z0S 165

166 CICS TS for z/0S: CICS Performance Guide

Chapter 9. Managing Workloads

Workload management in a sysplex is provided by:

« MVS workload manager: see[‘MVS workload manager’]

+ CICSPlex SM workload management: see[‘CICSPlex SM workload|
[management” on page 177|

MVS workload manager
This section discusses aspects of the MVS workload manager under the following
headings:
* [‘Terms used in MVS workload management” on paL‘Ib‘SJ
* |“Span of MVS workload manager operation” on page 169
* |‘Defining performance goals for MVS Workload Manager” on page 170
. :“Setting up service definitions for MVS Workload Manager” on page 171
. “‘Using MVS workload manager”’ on page 175|

MVS/ESA 5.1 and later includes the MVS workload manager, which provides
automatic, dynamic, balancing of system resources (central processors and
storage) across a sysplex by:

» Adopting a goal-oriented approach

» Gathering real-time data from the subsystems that reflect performance at an
individual task level

* Monitoring MVS- and subsystem-level delays and waits that are contributing to
overall task execution times

» Dynamically managing the sysplex’s resources, using the performance goals, and
the real-time performance and delay data, as inputs to system resource
management algorithms.

This is particularly significant in a sysplex environment, but is also of value to
subsystems running in a single MVS image.

To help you migrate to goal-oriented workload management, you can run any MVS
image in a sysplex in compatibility mode, using the performance management
tuning methods of releases of MVS before MVS/ESA 5.1.

Notes:

1. If you do not want to use the MVS workload management facility, you should
review your MVS performance definitions to ensure that they are still
appropriate for CICS Transaction Server for z/OS, Version 3 Release 1. To do
this, review parameters in the IEAICS and IEAIPS members of the MVS
PARMLIB library. For more information about these MVS performance
definitions, see the |zZ0S MVS Initialization and Tuning Guidg.

2. If you use CICSPlex SM to control dynamic routing in a CICSplex or BTS-plex,
you can base its actions on the CICS response time goals of the CICS
transactions as defined to the MVS workload manager. See ['CICSPlex SM
workload management” on page 177.| For full details, see fthe CICSPlex System|
Manager Managing Workloads manual,

The benefits of using MVS workload manager are:
* Improved performance through MVS resource management
The improvement is likely to depend on many factors, for example:

© Copyright IBM Corp. 1983, 2011 167

— System hardware configuration
— The way the system is partitioned
— Whether CICS subsystems are single or multi-region

— The spread of types of applications or tasks performed, and the diversity of
their profile of operation

— The extent to which the sysplex workload changes dynamically.
* Improved efficiency of typical MVS sysplexes
— Improved overall capacity
— Increased work throughput.
« Simplified MVS tuning
Generally, systems whose operating signature makes attaining or maintaining

optimal tuning difficult or time consuming to achieve by current means will tend to
obtain the greater benefit.

The main benefit is that you no longer have to continually monitor and tune CICS to
achieve optimum performance. You can set your workload objectives in the service
definition and let the workload component of MVS manage the resources and the
workload to achieve your objectives.

The MVS workload manager produces performance reports that you can use to
establish reasonable performance goals and for capacity planning.

The CICS function for MVS workload management incurs negligible impact on CICS
storage.

Terms used in MVS workload management

168

The following terms are used in the description of MVS workload management:

classification rules
The rules workload management and subsystems use to assign a service
class and, optionally, a reporting class to a work request (transaction). A
classification rule consists of one or more work qualifiers. See [‘Defining]
cclassification rules” on page 173

compatibility mode
A workload management mode for an MVS image in a sysplex using the
pre-workload management MVS performance tuning definitions from the
IEAICSxx and IEAIPSxx members of the SYS1.PARMLIB library.

goal mode
A workload management mode for an MVS image in a sysplex using an
MVS workload management service definition to automatically and
dynamically balance its system resources according to the active service
policy for the sysplex.

report class
Work for which reporting information is collected separately. For example,
you can have a report class for information combining two different service
classes, or a report class for information on a single transaction.

service class
A subset of a workload having the same service goals or performance
objectives, resource requirements, or availability requirements. For workload
management, you assign a service goal to a service class. See
lservice classes” on page 172

CICS TS for z/OS: CICS Performance Guide

service definition
An explicit definition of all the workloads and processing capacity in a
sysplex. A service definition includes service policies, workloads, service
classes, resource groups, and classification rules. See [‘Setting up service]
definitions for MVS Workload Manager” on page 171)

service policy
A set of performance goals for all MVS images using MVS workload
manager in a sysplex. There can be only one active service policy for a
sysplex, and all subsystems in goal mode within that sysplex process
towards that policy. However, you can create several service policies, and
switch between them to cater for the different needs of different processing
periods.

workload
Work to be tracked, managed and reported as a unit. Also, a group of
service classes.

workload management mode
The mode in which workload management manages system resources in
an MVS image within a sysplex. The mode can be either compatibility mode
or goal mode.

Span of MVS workload manager operation

MVS workload manager operates across a sysplex. You can run each MVS image
in the sysplex in either goal mode or compatibility mode. However, there can be
only one active service policy for all MVS images running in goal mode in a
sysplex.

All CICS regions (and other MVS subsystems) running on an MVS image with MVS
workload manager are subject to the effects of workload management.

If the CICS workload involves non-CICS resource managers, such as DB2 and
DBCTL, CICS can pass information through the resource manager interface (RMI")
to enable MVS workload manager to relate the part of the workload within the
non-CICS resource managers to the part of the workload within CICS.

Unlike MRO links, CICS does not pass information across ISC links to relate the
parts of the task execution thread on either side of the ISC link. If you use tasks
that communicate across ISC links, you must define separate performance goals,
and service classes, for the parts of the task execution thread on each side of the
ISC link. These rules apply to ISC links that are:

» Within the same MVS image (so called “intrahost ISC”)

+ Between MVS images in the same sysplex (perhaps for compatibility reasons)
» Between MVS images in different sysplexes.

If you use tasks that communicate across ISC links between two sysplexes, the

separate performance goals are defined in the active service policy for each
sysplex.

1. The CICS interface modules that handle the communication between a task-related user exit and the resource manager are
usually referred to as the resource manager interface (RMI) or the task-related user exit (TRUE) interface.

Chapter 9. Managing Workloads 169

Defining performance goals for MVS Workload Manager

You can define performance goals, such as internal response times, for CICS (and
other MVS subsystems that comprise your workload). As an alternative to defining
your own goals, you can use “discretionary goals”—the workload manager decides
how best to run work for which this type of goal is specified. You can define goals
for:

* Individual CICS regions

» Groups of transactions running under CICS

* Individual transactions running under CICS

» Transactions associated with individual userids

» Transactions associated with individual LU names.

Workload management also collects performance and delay data, which can be
used by reporting and monitoring products, such as the Resource Measurement
Facility (RMF), Tivoli Decision Support for z/OS, or vendor products.

The service level administrator defines your installation’s performance goals, and
monitoring data, based on business needs and current performance. The complete
definition of workloads and performance goals is called a service definition. You
may already have this kind of information in a service level agreement (SLA).

Determining CICS response times before defining goals

Before you set goals for CICS work, you can determine CICS current response

times by running CICS in compatibility mode with an arbitrary goal. For this

purpose, use the SRVCLASS parameter in the installation control specification

(ICS). This parameter lets you associate a service class with a report performance

group, to be run in compatibility mode. You would then:

1. Define a service policy, with a default service class, or classes, for your CICS
work, and specify an arbitrary response time goal (say 3 seconds)

2. Define classification rules for the service class or classes (see
[classification rules” on page 173)

3. Install the service definition
4. Activate the service policy in compatibility mode.

The average response time for work within the service classes is reported under the
report performance group in the RMF Monitor | workload activity report.

This information helps you to set realistic goals for running your CICS work when
you switch to goal mode. The reporting data produced by RMF reports:

* Is organized by service class

» Contains reasons for any delays that affect the response time for the service
class (for example, because of the actions of a resource manager or an 1/O
subsystem).

From the reported information, you may be able to determine configuration changes
to improve performance.

Example of using SRVCLASS parameter of IEAICSxx

To obtain CICS response time information while in compatibility mode, you can set
up the following:

* In your service definition, set up the following:
— Atest policy, comprising the following:

170 CICS TS for z/OS: CICS Performance Guide

Service Policy Name . . . : CICSTEST

Description : Migration (compatibility) mode
— A workload definition, in which to define the required service class:
Workload Name : CICSALL
Description CICSTEST migration workload
— A service class for all CICS transactions:
Service Class Name : CICSALL
Description A11 CICS transactions
Workload Name CICSALL
---Period--- —---mmmmmmmmee o Goal-=======mmmmmmm e
Action # Duration Imp. Description
. 1 1 Average response time of 00:00:03.000

Note: It does not matter what goal you specify, since it is not used in
compatibility mode, but it cannot be discretionary.
— Specify the name of the service class under the classification rules for the
CICS subsystem:

Subsystem Type : CICS
Default Service Class . . : CICSALL

* In your ICS member in SYS1.PARMLIB (IEAICSxx), specify:
SUBSYS=CICS,
SRVCLASS=CICSALL,RPGN=100

* Install the workload definition in the coupling facility.

» Activate the test service policy, either by using options provided by the WLM
ISPF application, or by issuing the following MVS command:

VARY WLM,POLICY=CICSTEST

You receive response time information about CICS transactions in the RMF Monitor
| Workload Activity Report under report performance group 100. For more
information about defining performance goals and the use of SRVCLASS, see the
MVS Planning: Workload Management manual.

Setting up service definitions for MVS Workload Manager

You define one service definition for each sysplex. A service definition consists of:
Service policies
See [‘Defining service policies” on page 172
Workloads
See [‘Defining workloads” on page 172]
Service classes
See [‘Defining service classes” on page 172
Classification rules
See ['Defining classification rules” on page 173|

You should record the details of your planned service definition on worksheets, as
described in the MVS Planning: Workload Management manual. MVS 5.1 provides
an ISPF panel-based application for setting up and adjusting the service definition.

Using a service definition base

To minimize the amount of data you need to enter into the ISPF workload
application, you use a service definition base. When you set up your service
definition, you identify the workloads, the service classes, and their goals, based on
your performance objectives. Then you define classification rules. This information
makes up the service definition base. The base contains workloads, service
classes, resource groups, report classes, and classification rules.

Chapter 9. Managing Workloads 171

All workloads, service classes, and classification rules defined in a service definition
base apply to every policy that you define. You should use classification rules for
every service class defined in your service definition. If you do not have any other
business requirements to modify a service goal or a resource group from the
service definition base, you can run an installation with one policy.

Defining service policies

You can have one or more service policies, which are a named set of performance
goals meant to cover a certain operating period.

If you have varying performance goals, you can define several service policies.

You can activate only one service policy at a time for the whole sysplex, and, when
appropriate, switch to another policy.

Defining workloads

A workload comprises units of work that share some common characteristics that
makes it meaningful for an installation to manage or monitor as a group. For
example, all CICS work, or all CICS order entry work, or all CICS development
work.

A workload is made up of one or more service classes.

Defining service classes
Service classes are categories of work, within a workload, to which you can assign
performance goals. You can create service classes for groups of work with similar:
* Performance goals
You can assign the following performance goals to the service classes:

Response time
You can define an average response time (the amount of time required to
complete the work) or a response time with percentile (a percentage of
work to be completed in the specified amount of time).

Discretionary
You can specify that the goal is discretionary for any work for which you
do not have specific goals.

Velocity
For work not related to transactions, such as batch jobs and started
tasks. For CICS regions started as started tasks, a velocity goal applies
only during start-up.

Notes:

1. For service classes for CICS transactions, you cannot define velocity
performance goals, discretionary goals, or multiple performance periods.

2. For service classes for CICS regions, you cannot define multiple performance
periods.

* Business importance to the installation

You can assign an importance to a service class, so that one service class goal
is recognized as more important than other service class goals. There are five
levels of importance, numbered, from highest to lowest, 1 to 5.

You can also create service classes for started tasks and JES, and can assign
resource groups to those service classes. You can use such service classes to

172 CICS TS for z/OS: CICS Performance Guide

manage the workload associated with CICS as it starts up, but before CICS
transaction-related work begins. (Note that when you define CICS in this way, the
address space name is specified as TN, for the task or JES “transaction” name.)

There is a default service class, called SYSOTHER. It is used for CICS transactions
for which MVS workload management cannot find a matching service class in the
classification rules—for example, if the couple data set becomes unavailable.

For RMF to provide meaningful Workload Activity Report data it is suggested that
you use the following guidelines when defining the service classes for CICS
transactions. In the same service class:

1. Do not mix CICS-supplied transactions with user transactions

2. Do not mix routed with non-routed transactions

3. Do not mix conversational with pseudo-conversational transactions
4. Do not mix long-running and short-running transactions.

Defining classification rules

Classification rules determine how to associate incoming work with a service class.
Optionally, the classification rules can assign incoming work to a report class, for
grouping report data.

There is one set of classification rules for each service definition. The classification
rules apply to every service policy in the service definition; so there is one set of
rules for the sysplex.

You should use classification rules for every service class defined in your service
definition.

Classification rules categorize work into service classes and, optionally, report
classes, based on work qualifiers. You set up classification rules for each MVS
subsystem type that uses workload management. The work qualifiers that CICS can
use (and which identify CICS work requests to workload manager) are:

LU LU name

LUG LU name group

Sl Subsystem instance (VTAM applid)
SIG Subsystem instance group

TN Transaction identifier

TNG Transaction identifier group

ul Userid

UIG Userid group.

Notes:

1. You should consider defining workloads for terminal-owning regions only. Work
requests do not normally originate in an application-owning region. They
(transactions) are normally routed to an application-owning region from a
terminal-owning region, and the work request is classified in the terminal-owning
region. In this case, the work is not reclassified in the application-owning region.

If work orginates in the application-owning region it is classified in the
application-owning region; normally there would be no terminal.

2. You can use identifier group qualifiers to specify the name of a group of
qualifiers; for example, GRPACICS could specify a group of CICS tranids, which
you could specify on classification rules by TNG GRPACICS. This is a useful
alternative to specifying classification rules for each transaction separately.

Chapter 9. Managing Workloads 173

You can use classification groups to group disparate work under the same work
qualifier—if, for example, you want to assign it to the same service class.

You can set up a hierarchy of classification rules. When CICS receives a
transaction, workload manager searches the classification rules for a matching
qualifier and its service class or report class. Because a piece of work can have
more than one work qualifier associated with it, it may match more than one
classification rule. Therefore, the order in which you specify the classification rules
determines which service classes are assigned.

Note: You are recommended to keep classification rules simple.

Example of using classification rules
As an example, you might want all CICS work to go into service class CICSB
except for the following:

« All work from LU name S218, except the PAYR transaction, is to run in service
class CICSA

» Work for the PAYR transaction (payroll application) entered at LU name S218 is
to run in service class CICSC.

» All work from terminals other than LU name S218, and whose LU name begins
with S2, is to run in service class CICSD.

You could specify this by the following classification rules:

4 N
Subsystem Type CICS
——————— Qualifier----------- -------Class--------
Type Name Start Service Report
DEFAULTS: CICSB
1 W $218 CICSA
2 N PAYR cIcsc
1 LW S2* CICSD
o %

Note: In this classification, the PAYR transaction is nested as a sub-rule under the
classification rule for LU name S218, indicated by the number 2, and the
indentation of the type and name columns.

Consider the effect of these rules on the following work requests:
Request 1 Request 2 Request 3 Request 4

LU name S218 A0GO1 S218 S214

Transaction .. PAYR PAYR DEBT ANOT

» For request 1, the work request for the payroll application runs in service class
CICSC. This is because the request is associated with the terminal with LU name
S218, and the TN—PAYR classification rule specifying service class CICSC is
nested under the LU—S218 classification rule qualifier.

» For request 2, the work request for the payroll application runs in service class
CICSB, because it is not associated with LU name S218, nor S2*, and there are
no other classification rules for the PAYR transaction. Likewise, any work
requests associated with LU names that do not start with S2 run in service class
CICSB, as there are classification rules for LU names S218 and S2* only.

» For request 3, the work request for the DEBT transaction runs in service class
CICSA, because it is associated with LU name S218, and there is no DEBT
classification rule nested under the LU—S218 classification rule qualifiers.

174 CICS TS for z/OS: CICS Performance Guide

* For request 4, the work request for the ANOT transaction runs in service class
CICSD, because it is associated with an LU name starting S2, but not S218.

However, if the classification rules were specified as:

1 TN PAYR CICSA
1L 5218 CICSA
2 TN PAYR CICSC
1L S2x CICSD

the PAYR transaction would always run in service class CICSA, even if it were
associated with LU name S218.

Using MVS workload manager

To use the MVS workload manager facility:

1.

2.

3.

Implement workload management on the MVS images that the CICS workload
is to run on, as outlined in FImplementing MVS workload management.]
Ensure that CICS performance parameters correspond to the policies defined
for MVS workload management, as outlined in ['Matching CICS performance]
[parameters to service policies” on page 176.]

Activate MVS workload manager, as outlined in[“Activating CICS support for|
[MVS workload manager” on page 176

Implementing MVS workload management

The task of implementing MVS workload management is part of the overall task of
planning for, and installing, z/OS.

Implementing MVS workload management generally involves the following steps:

1.

Al S

11.

Establish your workloads.
Set your business priorities.
Understand your performance objectives.
Define critical work.
Define performance objectives based on current:
* Business needs
* Performance:
— Reporting and monitoring products
— Capacity planning tools
— IEAICS and IEAIPS parameters.
Get agreement for your workload performance objectives.
Specify a service level agreement or performance objectives.
Specify an MVS WLM service definition using the information from step

Note: It is helpful at this stage to record your service definition in a form that
will help you to enter it into the MVS workload manager ISPF
application. You are recommended to use the worksheets provided in
the MVS publication Planning: Workload Management.

Install MVS.

Set up a sysplex with a single MVS image, and run in workload manager
compatibility mode.
Upgrade your existing XCF couple data set.

Chapter 9. Managing Workloads 175

12. Start the MVS workload manager ISPF application, and use it in the following
steps.

13. Allocate and format a new couple data set for workload management. (You can
do this from the ISPF application.)

14. Define your service definition.

15. Install your service definition on the couple data set for workload management.
16. Activate a service policy.

17. Switch the MVS image into goal mode.

18. Start up a new MVS image in the sysplex. (That is, attach the new MVS image
to the couple data set for workload management, and link it to the service
policy.)

19. Switch the new MVS image into goal mode.

20. Repeat stepsand for each new MVS image in the sysplex.

Notes:

1. CICS Transaction Server for z/OS support for MVS workload manager is
initialized automatically during CICS startup.

2. All CICS regions (and other MVS subsystems) running on an MVS image with
MVS workload management are subject to the effects of workload manager.

Matching CICS performance parameters to service policies

You must ensure that the CICS performance parameters are compatible with the
workload manager service policies used for the CICS workload.

In general, you should define CICS performance objectives to the MVS workload
manager first, and observe the effect on CICS performance. Once the MVS
workload manager definitions are working correctly, you can then consider tuning
the CICS parameters to further enhance CICS performance. However, you should
use CICS performance parameters as little as possible.

Performance attributes that you might consider using are:
» Transaction priority, passed on dynamic transaction routing.

You should take care when choosing the priority to assign to each transaction.
Although you can specify transaction priorities from 0 to 255, you should avoid
using a large number of closely spaced values. You will get as much benefit if
you use a small number of widely spaced values.

The priority assigned by the CICS dispatcher must be compatible with the
performance parameters defined to MVS workload manager.

* Maximum number of concurrent user tasks for the CICS region.
¢ Maximum number of concurrent tasks in each transaction class.

Activating CICS support for MVS workload manager

CICS support for MVS workload manager is initialized automatically during CICS
startup.

Customer-written resource managers and other non-CICS code which is attached to
CICS via the RMI must be modified to provide workload manager support, if
workload manager is to work correctly for CICS-based tasks which cross the RMI
into such areas.

176 CICS TS for z/OS: CICS Performance Guide

CICSPlex SM workload management

CICSPlex SM workload management directs work requests to a target region that
is selected using one of the following:

The queue algorithm
CICSPlex SM routes work requests initiated in the requesting region to the
most suitable target region within the designated set of target regions.

The goal algorithm
CICSPIlex SM routes work requests to the target region that is best able to
meet the goals that have been predefined using MVS workload manager.

The CICSPlex SM dynamic routing program EYU9XLOP is invoked to route work
requests to the selected target region. EYU9XLOP supports both workload
balancing and workload separation. You define to CICSPlex SM which requesting,
routing, and target regions in the CICSplex or BTS-plex can participate in dynamic
routing, and any affinities that govern the target regions to which particular work
requests must be routed. The output from the CICS Interdependency Analyzer can
be used directly by CICSPlex SM. (For information about the CICS
Interdependency Analyzer, see the CICS Interdependency Analyzer for z/OS User's
Guide and Reference.)

There are no special requirements for using CICSPlex SM workload management,
which supports both the distributed routing and dynamic routing models of CICS.
Workload management of the following types of requests is supported:

» Dynamic transaction routing
* Dynamic DPL

» Start requests

* BTS activities

* EJB requests

» 3270 link requests

CICSPlex SM workload management offers the user the following:

« A dynamic routing program to make more intelligent routing decisions; for
example, based on workload goals.

* Improved CICS support for MVS goal-oriented workload management.

» Easier access to a global temporary storage owning region in the MVS sysplex
environment. This avoids intertransaction affinity that can occur with the use of
local temporary storage queues.

* Intelligent routing (through CICSPlex SM) in a CICSPlex or a BTS-plex that has
at least one requesting region linked to multiple target regions.

For information on setting up and using CICSPlex SM workload management, see

CICSPlex System Manager Concepts and Planning|and |CICSPlex System Managef

Managing Workloads

Chapter 9. Managing Workloads 177

178 CICS TS for z/OS: CICS Performance Guide

Chapter 10. Understanding and using RMF workload manager

data

RMF provides data for subsystem work managers that support workload
management. In MVS these are IMS and CICS.

This chapter includes a discussion of some possible data that may be reported for
CICS and IMS in an RMF workload activity report, and provides some possible
explanations for the data. Based on this discussion and the explanations, you may
decide to alter your service class definitions. In some cases, there may be some
actions that you can take, in which case you can follow the suggestion. In other
cases, the explanations are provided only to help you better understand the data.
For more information about using RMF, see the RMF User’s Guide.

This chapter covers the following topics:

* [‘Using CICS monitoring information with RMPF’|
« [Terms used in RMF reports” on page 180
* [“Interpreting the RMF workload activity data” on page 182|

» |“An explanation of the difference between a DFHSTUP transaction report and an|
RMF workload report” on page 190

Using CICS monitoring information with RMF

This section explains how to use the Resource Measurement Facility (RMF) to
obtain transaction response time reporting.

CICS usage of RMF transaction reporting

CICS monitoring facility with RMF provides a very useful tool for performing
day-to-day monitoring of CICS transaction rates and response times.

The objective of using the CICS monitoring facility with RMF is to enable
transaction rates and internal response times to be monitored without incurring the
overhead of running the full CICS monitoring facility and associated reporting. This
approach may be useful when only transaction statistics are required, rather than
the very detailed information that CICS monitoring facility produces. An example of
this is the monitoring of a production system where the minimum overhead is
required.

CICS monitoring facility and the MVS workload manager's use of

SYSEVENT

The CICS monitoring facility issues an MVS workload manager IWMRPT or
IWMMNTFY macro that gives the following SYSEVENT information to the MVS
workload manager (WLM):

* The time at which the user-task was attached.

» The subsystem identification. This is derived from the first four characters of the
CICS generic APPLID or from the four character name specified on the
MNSUBSYS parameter if it is specified in the system initialization table (SIT).

» The transaction identifier of the task. This is the name of the CICS RDO
transaction in the CICS program control table. This can be the name of a CICS
system transaction, such as CSMI, CSNC, or CSPG.

* The user identifier.

© Copyright IBM Corp. 1983, 2011 179

» The specific APPLID of the CICS region. This is derived from the system
initialization parameter, APPLID. It is expressed as the full 8 bytes of the
transaction class parameter.

ERBRMF member for Monitor | session

This member defines the options that are used on the RMF Monitor | background
session. This session does not include transaction reporting as used by CICS, but a
Monitor | session has first to be active. A WKLD has to be defined to allow TRX
reporting to be activated.

ERBRMF member for Monitor Il session

This member defines the options that are used on the RMF Monitor Il background
session. This session performs transaction reporting as used by CICS. TRX defaults
to TRX(ALLPGN) which reports on all transactions. Individual transactions can be
named if desired.

RMF operations

A RMF job has to be started and this includes the Monitor | session. The RMF job

should be started before initializing CICS. The RMF Monitor Il session is started by
the command F RMF,S aa,MEMBER(xx) where ‘aa’ indicates alphabetic characters
and ‘xx’ indicates alphanumeric characters.

Terms used in RMF reports

It might help to relate some of the terms used in an RMF activity report to the more
familiar CICS terms. For example, some of terms in the RMF report can be equated
with CEMT INQUIRE TASK terms.

These explanations are given for two main sections of the reports:
* The response time breakdown in percentage section
* The state section, covering switched time.

The response time breakdown in percentage section

The “Response time breakdown in percentage” section of the RMF report contains
the following headings:

ACTIVE
The percentage of response time accounted for by tasks currently executing
in the region—tasks shown as Running by the CEMT INQUIRE TASK
command.

READY
The percentage of response time accounted for by tasks that are not
currently executing but are ready to be dispatched—tasks shown as
Dispatchable by the CEMT INQUIRE TASK command.

IDLE The percentage of response time accounted for by a number of instances
or types of CICS tasks:

» Tasks waiting on a principal facility (for example, conversational tasks
waiting for a response from a terminal user)

* The terminal control (TC) task, CSTP, waiting for work

* The interregion controller task, CSNC, waiting for transaction routing
requests

» CICS system tasks, such as CSSY or CSNE waiting for work.

180 CICS TS for z/0S: CICS Performance Guide

A CEMT INQUIRE TASK command would show any of these user tasks as
Suspended, as are the CICS system tasks.

WAITING FOR
The percentage of response time accounted for by tasks that are not
currently executing and are not ready to be dispatched—shown as
Suspended by the CEMT INQUIRE TASK command.

The WAITING FOR main heading is further broken down into a number of
subsidiary headings. Where applicable, for waits other than those described for the
IDLE condition described above, CICS interprets the cause of the wait, and records
the ‘waiting for’ reason in the WLM performance block.

The waiting-for terms used in the RMF report equate to the WLM_WAIT_TYPE
parameter on the SUSPEND, WAIT_OLDC, WAIT_OLDW, and WAIT_MVS calls
used by the dispatcher, and the SUSPEND and WAIT_MVS calls used in the CICS
XPI. These are shown as follows (with the CICS WLM_WAIT_TYPE term, where
different from RMF, in parenthesis):

Term Description

LOCK Waiting on a lock. For example, waiting for:
* Alock on CICS resource
» A record lock on a recoverable VSAM file
» Exclusive control of a record in a BDAM file
* An application resource that has been locked by an EXEC CICS ENQ
command.
1/0 (10)
Waiting for an I/O request or 1/O related request to complete. For example:
» File control, transient data, temporary storage, or journal I/O.
» Waiting on I/O buffers or VSAM strings.

CONV Waiting on a conversation between work manager subsystems. This
information is further analyzed under the SWITCHED TIME heading.

DIST Not used by CICS.

LOCAL (SESS_LOCALMVS)
Waiting on the establishment of a session with another CICS region in the
same MVS image in the sysplex.

SYSPL (SESS_SYSPLEX)
Waiting on establishment of a session with another CICS region in a
different MVS image in the sysplex.

REMOT (SESS_NETWORK)
Waiting on the establishment of an ISC session with another CICS region
(which may, or may not, be in the same MVS image).

TIMER
Waiting for a timer event or an interval control event to complete. For
example, an application has issued an EXEC CICS DELAY or EXEC CICS
WAIT EVENT command which has yet to complete.

PROD (OTHER_PRODUCT)
Waiting on another product to complete its function; for example, when the
work request has been passed to a DB2 or DBCTL subsystem.

MISC Waiting on a resource that does not fall into any of the other categories.

Chapter 10. Understanding and using RMF workload manager data 181

The state section

The state section covers the time that transactions are “switched” to another CICS
region:

SWITCHED TIME
The percentage of response time accounted for by tasks in a TOR that are
waiting on a conversation across an intersystem communication link (VRO
or ISC). This information provides a further breakdown of the response time
shown under the CONV heading.

The SWITCHED TIME heading is further broken down into a number of subsidiary
headings, and covers those transactions that are waiting on a conversation. These
are explained as follows:

LOCAL
The work request has been switched, across an MRO link, to another CICS
region in same MVS image.

SYSPL
The work request has been switched, across an XCF/MRO link, to another
CICS region in another MVS image in the sysplex.

REMOT
The work request has been switched, across an ISC link, to another CICS
region (which may, or may not, be in the same MVS image).

Interpreting the RMF workload activity data

An RMF workload activity report contains “snapshot data” which is data collected
over a relatively short interval. The data for a given work request (CICS transaction)
in an MRO environment is generally collected for more than one CICS region,
which means there can be some apparent inconsistencies between the execution
(EXE) phase and the begin to end (BTE) data in the RMF reports. This is caused
by the end of a reporting interval occurring at a point when work has completed in
one region but not yet completed in an associated region.

illustrates this.

» time >
interval RMF reporting interval RMF reporting int
TOR AOR TOR
Starts ———»Runs and completes —+—» Completes TxnA
TxnA TxnA, which is which is included
and routes included in EXE in BTE total for
it to AOR. total for this interval. this interval.

Figure 45. lllustration of snapshot principle for RMF reporting intervals

For example, an AOR can finish processing transactions, the completion of which
are included in the current reporting interval, whilst the TOR may not complete its
processing of the same transactions during the same interval.

182 CICS TS for z/OS: CICS Performance Guide

shows an example of the CICS state section of an RMF Monitor |
workload activity report. It is based on an example hotel reservations service class.

The text following the figure explains how to interpret the fields.
RMF reporting intervals

REPORT BY: POLICY=HPTSPOL1 WORKLOAD=PRODWKLD SERVICE CLASS=CICSHR RESOURCE GROUP=*NONE PERIOD=1 IMPORTANCE=HIGH

-TRANSACTIONS-- TRANSACTION TIME HHH.MM.SS.TTT

AVG 0.00 ACTUAL 000.00.00.114

MPL 0.00 QUEUED 000.00.00.036

ENDED 216 EXECUTION 000.00.00.078

END/SEC 0.24 STANDARD DEVIATION 000.00.00.270

#SWAPS 0

EXECUTD 216

-------------------------- RESPONSE TIME BREAKDOWN IN PERCENTAGE------------------= ----STATE------

SUB P TOTAL ACTIVE READY IDLE =------mmmmmmmmomm oo WAITING FOR-----=mmmmmmmmmmmmmme SWITCHED TIME (%)
TYPE LOCK I/0 CONV DIST LOCAL SYSPL REMOT TIMER PROD MISC LOCAL SYSPL REMOT

CICS BTE 93.4 10.2 0.0 0.0 0.0 0.0 83.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 83.3 0.0 0.0
CICS EXE 67.0 13.2 7.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 46.7 0.0 0.0 0.0 0.0

Figure 46. Hotel Reservations service class

The fields in this RMF report describe an example CICS hotel reservations service
class (CICSHR), explained as follows:

SUBTYPE: CICS
This field indicates that the subsystem work manager is CICS.

P: BTE
This field indicates that the data in the row relates to the begin-to-end work
phase.

CICS transactions are analyzed over two phases: a begin-to-end (BTE)
phase, and an execution (EXE) phase.

The begin-to-end phase usually takes place in the terminal owning region
(TOR), which is responsible for starting and ending the transaction.

P: EXE
This field indicates that the data in the row relates to the execution work
phase. The execution phase can take place in an application owning region
(AOR) and a resource-owning region such as an FOR. In our example, the
216 transactions were routed by a TOR to another region for execution,
such as an AOR (and possibly an FOR).

ENDED
This field shows that 216 hotel reservation transactions completed.

EXECUTD
This field shows that the AORs completed 216 transactions in the reporting
interval.

Note: In our example the two phases show the same number of
transactions completed, indicating that during the reporting interval
all the transactions routed by the TORs (ENDED) were completed by
the AORs (EXECUTD) and also completed by the TORs. This will
not normally be the case because of the way data is captured in
RMF reporting intervals. See [‘RMF reporting intervals.”|

Chapter 10. Understanding and using RMF workload manager data 183

ACTUAL
Shown under TRANSACTION TIME, this field shows the average response
time as 0.114 seconds, for the 216 transactions completed in the BTE
phase.

EXECUTION
Shown under TRANSACTION TIME, this field shows that on average it took
0.078 seconds for the AORs to execute the transactions.

While executing these transactions, CICS records the states the transactions are
experiencing. RMF reports the states in the RESPONSE TIME BREAKDOWN IN
PERCENTAGE section of the report, with one line for the begin-to-end phase, and
another for the execution phase.

The response time analysis for the BTE phase is described as follows:

For BTE
Explanation

TOTAL
The CICS BTE total field shows that the TORs have information covering
93.4% of the ACTUAL response time, the analysis of which is shown in the
remainder of the row.

ACTIVE
On average, the work (transactions) was active in the TORs for only about
10.2% of the ACTUAL response time

READY
In this phase, the TORs did not detect that any part of the average
response time was accounted for by work that was dispatchable but waiting
behind other transactions.

IDLE In this phase, the TORs did not detect that any part of the average
response time was accounted for by transactions that were waiting for work.

WAITING FOR
The WAITING FOR section includes values for LOCK, I/0, CONV, DIST,
LOCAL, SYSPL, REMOT, TIMER, PROD and MISC. In this report, only one
field shows a value in the WAITING FOR section—the CONV value (this is
typical for a TOR). It indicates that for about 83.3% of the time, the
transactions were waiting on a conversation. This is further explained by the
SWITCHED TIME data.

SWITCHED TIME
From the SWITCHED TIME % data, which has values for LOCAL, SYSPL
and REMOT, you can see the reason for the ‘waiting-on-a-conversation’.
This is 83.3 % LOCAL, which indicates that the transactions were routed
locally to an AOR on the same MVS image.

Note: In the analysis of the BTE phase, the values do not exactly add up to the
TOTAL value because of rounding—in our example, 10.2 + 83.3 = 93.5,
against a total shown as 93.4.

The response time analysis for the EXE phase is described as follows:

For EXE
Explanation

184 CICS TS for z/OS: CICS Performance Guide

TOTAL
The CICS EXE total field shows that the AORs have information covering
67% of the ACTUAL response time.

ACTIVE
On average, the work is active in the AOR for only about 13.2% of the
average response time.

READY
On average the work is ready, but waiting behind other tasks in the region,
for about 7.1% of the average response time.

PROD On average, 46.7% of the average response time is spent outside the CICS
subsystem, waiting for another product to provide some service to these
transactions.

You can't tell from this RMF report what the other product is, but the
probability is that the transactions are accessing data through a database
manager such as Database Control (DBCTL) or DB2.

The following sections give some examples of possible data that may be reported
for CICS and IMS in an RMF workload activity report, and some possible
explanations for the data.

+ [‘BMF report example: very large percentages in the response time breakdown’]
[‘RMF report example: response time breakdown data is all zero” on page 187
[‘RMF report example: execution time greater than response time” on page 188|
+ [‘RMF report example: large SWITCH LOCAL Time in CICS execution phase” on|

page 18§|

+ [‘RMF report example: fewer ended transactions with increased response times’|

on page 189|

RMF report example: very large percentages in the response time
breakdown

[Figure 47] shows an example of a work manager state section for the CICSPROD
service class. In the RESPONSE TIME BREAKDOWN IN PERCENTAGE section of
the report, both the CICS EXE and the CICS BTE rows show excessively inflated
percentages: 78.8K, 183, 1946 and so on.

REPORT BY: POLICY=HPTSPOL1 WORKLOAD=PRODWKLD SERVICE CLASS=CICSPROD RESOURCE GROUP=*NONE PERIOD=1 IMPORTANCE=HIGH

-TRANSACTIONS-- TRANSACTION TIME HHH.MM.SS.TTT

AVG 0.00 ACTUAL 000.00.00.111
MPL 0.00 QUEUED 000.00.00.000
ENDED 1648 EXECUTION 000.00.00.123
END/SEC ~ 1.83 STANDARD DEVIATION 000.00.00.351
#SWAPS 0
EXECUTD 1009
------------------------------- RESPONSE TIME BREAKDOWN IN PERCENTAGE------------========== ===STATE-=====--
SUB P TOTAL ACTIVE READY IDLE =mmmmmmmmmmmmmmmmoma WAITING FOR-=-==mmmmmmmmmmm e SWITCHED TIME (%)
TYPE LOCK I/0 CONV DIST LOCAL SYSPL REMOT TIMER PROD MISC LOCAL SYSPL REMOT

CICS BTE 78.8K 183 265 1946 0.0 0.0 235 0.0 0.0 0.0 0.0 0.0 0.0 76.2K 229 0.0 17.9
CICS EXE 140 91.8 3.1 0.0 0.0 0.1 0.0 0.6 0.0 0.0 0.0 0.0 45.4 0.0 19.6K 0.0 0.0

Figure 47. Response Time percentages greater than 100

Possible explanations

There several possible explanations for the unusual values shown in this sample
report:

* Long-running transactions

Chapter 10. Understanding and using RMF workload manager data 185

* Never-ending transactions
e Conversational transactions
* Dissimilar work in service class

Long-running transactions

Suppose that, of the total of 1648 transactions, 1647 of them have ended within 0.1
seconds, and one transaction has been running for 5 minutes and is still executing
when the RMF interval expires. RMF will show an average response time of 0.111
seconds, and breakdown that response time into the states.

The subsystem, however, recorded a total of 183 seconds (0.111 seconds per
transaction times 1647 transactions equals 182.8) plus 300 seconds (5 times 60
seconds for the one transaction running for 5 minutes.) This is 483 seconds-worth
of data describing the CICSPROD transactions. When this is divided by the total of
1648 transactions during the interval it gives approximately 0.3 seconds-worth of
data for each completed transaction. This is 3 times the reported average response
time, hence RMF reports state that total 300% of the response time.

When such a long transaction completes, it can easily distort the average response
time during that interval. RMF reports the standard deviation and distribution of
response times around the goal emphasizing when this occurs.

The long running transactions could be either routed or non-routed transactions.
Routed transactions are transactions that are routed from a TOR to one or more
AORs. Long-running routed transactions could result in many samples of waiting for
a conversation (CONV) in the CICS begin-to-end phase, with the AOR's state
shown in the execution phase.

Non-routed transactions execute completely in a TOR, and have no execution
(CICS EXE) phase data. Non-routed CICS transactions could inflate the ACTIVE or
READY data for the CICS BTE phase.

Never-ending transactions

Never-ending transactions differ from long-running transactions in that they persist
for the life of a region. For CICS, these could include the IBM reserved transactions
such as CSNC and CSSY, or customer defined transactions. Never-ending
transactions are reported in a similar way to long-running transactions, as explained
above. However, for never-ending CICS transactions, RMF might report large
percentages in IDLE, or under TIMER or MISC in the WAITING FOR section.

Conversational transactions

Conversational transactions are considered long-running transactions. CICS marks
the state of a conversational transaction as IDLE when the transaction is waiting for
terminal input. Terminal input often includes long end-user think time, so you might
see very large values in the IDLE state as a percent of response time for completed
transactions.

Dissimilar work in the service class
A service class that mixes:

e Customer and IBM transactions,

* Long-running and short-running transactions

* Routed and non-routed transactions

» Conversational and non-conversational transactions

186 CICS TS for z/0S: CICS Performance Guide

can expect to have RMF reports showing that the total states sampled account for
more than the average response time. This can be expected if the service class is
the subsystem default service class. The default is defined in the classification rules
as the service class to be assigned to all work in a subsystem not otherwise
assigned a service class.

Possible actions

The following are some actions you could take for reports of this type:

Group similar work into the same service classes: Make sure your service
classes represent groups of similar work. This could require creating additional
service classes. For the sake of simplicity, you may have only a small number of
service classes for CICS work. If there are transactions for which you want the RMF
response time breakdown data, consider including them in their own service class.

Do nothing: For service classes representing dissimilar work such as the
subsystem default service class, recognize that the response time breakdown could
include long-running or never-ending transactions. Accept that RMF data for such
service classes does not make much sense.

RMF report example: response time breakdown data is all zero

shows an example of a work manager state section for the CICSLONG
service class. All data shows a 0.0 value.

REPORT BY: POLICY=HPTSPOL1 WORKLOAD=PRODWKLD SERVICE CLASS=CICSLONG RESOURCE GROUP=+NONE PERIOD=1 IMPORTANCE=HIGH

CICS Long Running Internal Trxs

-TRANSACTIONS-- TRANSACTION TIME HHH.MM.SS.TTT
AVG 0.00 ACTUAL 000.00.00.000
MPL 0.00 QUEUED 000.00.00.000
ENDED 0 EXECUTION 000.00.00.000
END/SEC 0.00 STANDARD DEVIATION 000.00.00.000
#SWAPS 0
EXECUTD 0
------------------------------- RESPONSE TIME BREAKDOWN IN PERCENTAGE--------------- ---------STATE---
SUB P TOTAL ACTIVE READY IDLE =-------mmmmmmmmmommmme oo WAITING FOR-----===-=-mmmmemm SWITCHED TIME (%)
TYPE LOCK I/0 CONV DIST LOCAL SYSPL REMOT TIMER PROD MISC LOCAL SYSPL REMOT
CICS BTE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 48. Response time breakdown percentages all 0.0

Possible explanations

There are two possible explanations:
1. No transactions completed in the interval
2. RMF did not receive data from all systems in the sysplex.

No transactions completed in the interval

While a long-running or never-ending transaction is being processed, RMF saves
the service class state samples to SMF Type 72 records, (subtype 3). But when no
transactions have completed, (and average response time is 0), the calculations to
apportion these state samples over the response time result in 0%.

RMF did not receive data from all systems in the sysplex.

The RMF post processor may have been given SMF records from only a subset of
the systems running in the sysplex. For example, the report may represent only a
single MVS image. If that MVS image has no TOR, its AORs receive CICS
transactions routed from another MVS image or from outside the sysplex. Since the

Chapter 10. Understanding and using RMF workload manager data 187

response time for the transactions is reported by the TOR, there is no transaction
response time for the work, nor are there any ended transactions.

Possible actions
The following are some actions you could take for reports of this type:

Do nothing

You may have created this service class especially to prevent the state samples of
long running transactions from distorting data for your production work. In this case
there is no action to take.

Combine all SMF records for the sysplex

The state data is contained in the SMF records. If you combine the data from an
MVS image that doesn't have a TOR with another MVS image that does, the state
data from the two MVS images is analyzed together by RMF. This ensures that the
response time distribution data is no longer reported as zeros.

RMF report example: execution time greater than response time

shows an example of a work manager state section for the CICSPROD
service class. In the example, there are 1731 ENDED transactions yet the
EXECUTD field shows that only 1086 have been executed. The response time
(ACTUAL field) shows 0.091 seconds as the average of all 1731 transactions, while
the AORs can only describe the execution of the 1086 they participated in, giving
an execution time of 0.113.

REPORT BY: POLICY=HPTSPOL1 WORKLOAD=PRODWKLD SERVICE CLASS=CICSPROD RESOURCE GROUP=*NONE PERIOD=1 IMPORTANCE=HIGH
CICS Trans not classified singly

-TRANSACTIONS-- TRANSACTION TIME HHH.MM.SS.TTT

AVG 0.00 ACTUAL 000.00.00.091
MPL 0.00 QUEUED 000.00.00.020
ENDED 1731 EXECUTION 000.00.00.113
END/SEC 1.92 STANDARD DEVIATION 000.00.00.092
#SWAPS 0

EXECUTD 1086

Figure 49. Execution time greater than response time

Possible explanation

The situation illustrated by this example could be explained by the service class
containing a mixture of routed and non-routed transactions. In this case, the AORs
have recorded states which account for more time than the average response time
of all the transactions. The response time breakdown shown by RMF for the
execution phase of processing can again show percentages exceeding 100% of the
response time.

Possible actions
Define routed and non-routed transactions in different service classes.

RMF report example: large SWITCH LOCAL Time in CICS execution
phase

[Figure 50 on page 189|shows a work manager state data section for a CICSPROD
service class. The SWITCH LOCAL time in the response time breakdown section
shows a value of 6645.

188 CICS TS for z/0S: CICS Performance Guide

REPORT BY: POLICY=HPTSPOL1 WORKLOAD=PRODWKLD SERVICE CLASS=CICSPROD RESOURCE GROUP=*NONE PERIOD=1 IMPORTANCE=HIGH

-TRANSACTIONS-- TRANSACTION TIME HHH.MM.SS.TTT

AVG 0.00 ACTUAL 000.00.00.150
MPL 0.00 QUEUED 000.00.00.039
ENDED 3599 EXECUTION 000.00.00.134
END/SEC 4.00 STANDARD DEVIATION 000.00.00.446
#SWAPS 0
EXECUTD 2961
------------------------------- RESPONSE TIME BREAKDOWN IN PERCENTAGE----------------- ------STATE------
SUB P~ TOTAL ACTIVE READY IDLE ------=--mmmmmmmmmmm oo WAITING FOR--=-===mmmmmmmmmmmmme e SWITCHED TIME (%)
TYPE LOCK I/0 CONV DIST LOCAL SYSPL REMOT TIMER PROD MISC LOCAL SYSPL REMOT

CICS BTE 26.8K 75.1 98.4 659 0.0 0.3 154 0.0 0.0 0.0 0.0 0.0 0.0 25.8< 149 0.0 7.8
CICS EXE 93.7 38.6 5.6 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 49.4 0.0 6645 0.0 0.0

Figure 50. High SWITCH time in a CICS execution environment

Possible explanations
This situation can be explained by instances of distributed transaction processing

If, while executing a transaction, an AOR needs to function ship a request to
another region (for example, to a file-owning or queue-owning region), the execution
time reported in the RMF report for the AOR (the CICS EXE field) includes the time
spent in that other region.

However, if a program initiates distributed transaction processing to multiple
back-end regions, there can be many AORs associated with the original transaction.
Each of the multiple back-end regions can indicate they are switching control back
to the front-end region (SWITCH LOCAL). Thus, with a 1-many mapping like this,
there are many samples of the execution phase indicating switched requests—Ilong
enough to exceed 100% of the response time of other work completing in the
service class.

Possible actions
None.

RMF report example: fewer ended transactions with increased
response times

The RMF workload activity report shows increased response times, and a decrease
in the number of ended transactions.

Possible explanation

This situation could be caused by converting from ISC to MRO between the TOR
and the AOR.

When two CICS regions are connected via VTAM intersystem communication (ISC)
links, the perspective from a WLM viewpoint is that they behave differently from
when they are connected via multiregion (MRO) option. One key difference is that,
with ISC, both the TOR and the AOR are receiving a request from VTAM, so each
believes it is starting and ending a given transaction. So for a given user request
routed from the TOR via ISC to an AOR, there would be 2 completed transactions.

Let us assume they have response times of 1 second and .75 seconds respectively,
giving for an average of .875 seconds. When the TOR routes via MRO, the TOR
will describe a single completed transaction taking 1 second (in a begin-to-end
phase), and the AOR will report it's .75 seconds as execution time. Therefore,

Chapter 10. Understanding and using RMF workload manager data 189

converting from an ISC link to an MRO connection, for the same workload, could
result in 1/2 the number of ended transactions and a corresponding increase in the
response time reported by RMF.

Possible action
Increase CICS transaction goals prior to your conversion to an MRO connection.

An explanation of the difference between a DFHSTUP transaction
report and an RMF workload report
shows the significance of the difference between the performance reports

created for the region by DFHSTUP, and those generated by the RMF workload
activity report for the reporting performance group number (RPGN).

WLM Classifies the CICS
transaction in the TOR

Work Arrival VTAM TOR AOR IMS or DB2

A\ 4

A\ 4

A4

A\ 4

A

A 4

A

A

A

Work Departure

A

A A 4 A

v v A v
0S/390 System Services (including WLM)

Figure 51. CICS MRO transaction workflow

If you are not familiar with the RMF workload activity report, see |Chapter 10,|
f‘Understanding and using RMF workload manager data,” on page 179 for more
information.

CICS transaction manager global statistics (see [‘Transaction statistics” on page]
include ALL transactions in all regions in the interval or summary reports from
DFHSTUP, but the MVS WLM workload activity report includes only the transactions
in Begin-To-End (BTE) phase and EXEcution (EXE) phase. For WLM reporting
purposes, the EXEcution phase applies to only routed transactions in the AOR.

In the terminal-owning region (TOR), the WLM reports for a given transaction are
included in the RMF workload activity reports for the RPGN defined for the service
class (for example, CICSPROD). In the application-owning region (AOR), notifys for
routed transactions are included in the RMF workload activity reports when

190 CICS TS for z/0S: CICS Performance Guide

reporting EXEcution phases in the CICS AOR. Transaction WLM notifys for mirror
transactions are ignored by the MVS WLM when reporting EXEcution phases in the

CICS FOR.

The RMF Report Analysis manual has more information about understanding RMF
reports.

Chapter 10. Understanding and using RMF workload manager data 191

192 CICS TS for z/OS: CICS Performance Guide

Part 3. Analyzing the performance of a CICS system

This part gives an overview of performance analysis, identifies performance
constraints, and describes various techniques for performance analysis.

+ [Chapter 11, “CICS performance analysis techniques,” on page 195
« [Chapter 12, “Identifying CICS constraints,” on page 207|
« [Chapter 13, “Tuning your CICS system,” on page 221.|

© Copyright IBM Corp. 1983, 2011 193

194 CICS TS for z/OS: CICS Performance Guide

Chapter 11. CICS performance analysis techniques

There are four main uses for performance analysis:

1. You currently have no performance problems, but you simply want to adjust the
system to give better performance.

2. You want to characterize and calibrate individual stand-alone transactions as
part of the documentation of those transactions, and for comparison with some
future time when, perhaps, they start behaving differently.

3. A system is departing from previously identified objectives, and you want to find
out precisely where and why this is so. Although an online system may be
operating efficiently when it is installed, the characteristics of the system usage
may change and the system may not run so efficiently. This inefficiency can
usually be corrected by adjusting various controls. At least some small
adjustments usually have to be made to any new system as it goes live.

4. A system may or may not have performance objectives, but it appears to be
suffering severe performance problems.

This chapter discusses techniques you can use to analyze the performance of your
system.

If the current performance does not meet your needs, you should consider tuning
the system (see [Chapter 13, “Tuning your CICS system,” on page 221). The basic
rules of tuning are:

1. Identify the major constraints in the system (see |Chapter 12, “ldentifying CICS|
[constraints,” on page 207).

2. Understand what changes could reduce the constraints, possibly at the expense
of other resources. (Tuning is usually a trade-off of one resource for another —
see [‘Determining acceptable tuning trade-offs” on page 221)

3. Decide which resources could be used more heavily.

4. Adjust the parameters to relieve the constrained resources (see

[changes to your system” on page 221).
5. Review the performance of the resulting system in the light of:
* Your existing performance objectives
* Progress so far
* Tuning effort so far.

See [*Virtual telecommunication access method (VTAM) trace” on page 29
6. Stop if performance is acceptable; otherwise do one of the following:

* Continue tuning

* Add suitable hardware capacity

* Lower your system performance objectives.

The tuning rules can be expressed in flowchart form as follows:

© Copyright IBM Corp. 1983, 2011 195

(Understand \

Performance
Objectives

N : J

A

Monitor the system
following a measurement
and evaluation plan

- Objectives

- Resource contention

- Predictions

Have the NO Identify major
perf_orm_ance » resolvable resource
|:c))bjectlveti contention

een met?

YES

Devise a tuning

Continue monitoring strategy that will:

the system as planned - Minimize usage
of resource

- Expand the capacity
of the system

A 4

Identify the variables

A 4

Predict the effects

A 4

Make the change

Figure 52. Flowchart to show rules for tuning performance

This chapter discusses techniques for performance analysis in the following

sections:
+ [‘What to investigate when analyzing performance” on page 197|

+ [“Information sources to help analyze performance” on page 198|
+ [‘Establishing a measurement and evaluation plan” on page 198
+ [“Assessing the performance of your system” on page 200|

196 CICS TS for z/0S: CICS Performance Guide

« [‘Methods of performance analysis” on page 201|
« [‘Performance analysis: full-load measurement” on page 202|
- [‘Performance analysis: single-transaction measurement” on page 205|

What to investigate when analyzing performance

Always start by looking at the overall system before you decide that you have a
specific CICS problem. The behavior of the system as a whole is usually just as
important. You should check such things as total processor usage, DASD activity,
and paging.

Performance degradation is often due to application growth that has not been
matched by corresponding increases in hardware resources. If this is the case,
solve the hardware resource problem first. You may still need to follow on with a
plan for multiple regions.

Information from at least three levels is required:

1. CICS: Examine the CICS interval or end-of-day statistics for exceptions,
queues, and other symptoms which suggest overloads on specific resources. A
shorter reporting period can isolate a problem. Consider software as well as
hardware resources: for example, utilization of VSAM strings or database
threads as well as files and TP lines. Check run time messages sent to the
console and to transient data destinations, such as CSMT and CSTL, for
persistent application problems and network errors.

Use tools such as CEMT and RMF, to monitor the online system and identify
activity which correlates to periods of bad performance. Collect CICS monitoring
facility history and analyze it, using tools like CICS Performance Analyzer or
Tivoli Decision Support to identify performance and resource usage exceptions
and trends. For example, processor-intensive transactions which do little or no
I/0 should be noted. After they get control, they can monopolize the processor.
This can cause erratic response in other transactions with more normally
balanced activity profiles. They may be candidates for isolation in another CICS
region.

2. MVS: Use SMF data to discover any relationships between periods of bad CICS
performance and other concurrent activity in the MVS system. Use RMF data to
identify overloaded devices and paths. Monitor CICS region paging rates to
make sure that there is sufficient real storage to support the configuration.

3. Network: The proportion of response time spent in the system is usually small
compared with transmission delays and queuing in the network. Use tools such
as NetView and NPM to identify problems and overloads in the network. Without
automatic tools like these, you are dependent on the application users’
subjective opinions that performance has deteriorated. This makes it more
difficult to know how much worse performance has become and to identify the
underlying reasons.

Within CICS, the performance problem is either a poor response time or an
unexpected and unexplained high use of resources. In general, you need to look at
the system in some detail to see why tasks are progressing slowly through the
system, or why a given resource is being used heavily. The best way of looking at
detailed CICS behavior is by using CICS auxiliary trace. But note that switching on
auxiliary trace, though the best approach, may actually worsen existing poor
performance while it is in use (see page m;

Chapter 11. CICS performance analysis techniques 197

The approach is to get a picture of task activity first, listing only the task traces, and
then to focus on particular activities: specific tasks, or a very specific time interval.
For example, for a response time problem, you might want to look at the detailed
traces of one task that is observed to be slow. There may be a number of possible
reasons.

The tasks may simply be trying to do too much work for the system. You are asking
it to do too many things, it clearly takes time, and the users are simply trying to put
too much through a system that can’t do all the work that they want done.

Another possibility is that the system is real-storage constrained, and therefore the
tasks progress more slowly than expected because of paging interrupts. These
would show as delays between successive requests recorded in the CICS trace.

Yet another possibility is that many of the CICS tasks are waiting because there is
contention for a particular function. There is a wait on strings on a particular data
set, for example, or there is an application enqueue such that all the tasks issue an
enqueue for a particular item, and most of them have to wait while one task actually
does the work. Auxiliary trace enables you to distinguish most of these cases.

Information sources to help analyze performance

Potentially, any performance measurement tool, including statistics and the CICS
monitoring facility, may tell you something about your system that help in
diagnosing problems. You should regard each performance tool as usable in some
degree for each purpose: monitoring, single-transaction measurement, and problem
determination.

Again, CICS statistics may reveal heavy use of some resource. For example, you
may find a very large allocation of temporary storage in main storage, a very high
number of storage control requests per task (perhaps 50 or 100), or high program
use counts that may imply heavy use of program control LINK.

Both statistics and CICS monitoring may show exceptional conditions arising in the
CICS run. Statistics can show waits on strings, waits for VSAM shared resources,
waits for storage in GETMAIN requests, and so on. These also generate CICS
monitoring facility exception class records.

While these conditions are also evident in CICS auxiliary trace, they may not
appear so obviously, and the other information sources are useful in directing the
investigation of the trace data.

In addition, you may gain useful data from the investigation of CICS outages. If
there is a series of outages, common links between the outages should be
investigated.

Establishing a measurement and evaluation plan

For some installations, a measurement and evaluation plan might be suitable. A
measurement and evaluation plan is a structured way to measure, evaluate, and
monitor the system’s performance. By taking part in setting up this plan, the users,
user management, and your own management will know how the system’s
performance is to be measured. In addition, you will be able to incorporate some of
their ideas and tools, and they will be able to understand and concur with the plan,
support you and feel part of the process, and provide you with feedback.

198 CICS TS for z/0S: CICS Performance Guide

The implementation steps for this plan are:

1.

Devise the plan

2. Review the plan

3.

Implement the plan

4. Revise and upgrade the plan as necessary.

Major activities in using the plan are:

Collect information periodically to determine:

— Whether objectives have been met

— Transaction activity

— Resource utilization.

Summarize and analyze the information. For this activity:

— Plot volumes and averages on a chart at a specified frequency
— Plot resource utilization on a chart at a specified frequency
— Log unusual conditions on a daily log

— Review the logs and charts weekly.

Make or recommend changes if objectives have not been met.
Relate past, current, and projected:

— Transaction activity

— Resource utilization.

to determine:
— If objectives continue to be met
— When resources are being used beyond an efficient capacity.

Keep interested parties informed by means of informal reports, written reports,
and monthly meetings.

A typical measurement and evaluation plan might include the following items as
objectives, with statements of recording frequency and the measurement tool to be
used:

Volume and response time for each department
Network activity:

Total transactions

Tasks per second

Total by transaction type

Hourly transaction volume (total, and by transaction).
Resource utilization examples:

— DSA utilization

— Processor utilization with CICS

— Paging rate for CICS and for the system

— Channel utilization

— Device utilization

— Data set utilization

— Line utilization.

Unusual conditions:

— Network problems

— Application problems

Chapter 11. CICS performance analysis techniques 199

— Operator problems

— Transaction count for entry to transaction classes

— SOS occurrences

— Storage violations

— Device problems (not associated with the communications network)
— System outage

— CICS outage time.

Assessing the performance of your system

You may find the following performance measurements helpful in determining the
performance of a system:

1.

Processor usage: This item reflects how active the processor is. Although the
central processor is of primary concern, 37X5 communications controllers and
terminal control units (these can include an intelligent cluster controller such as
the 3601 and also the 3270 cluster control units) can also increase response
time if they are heavily used.

I/O rates: These rates measure the amount of access to a disk device or data
set over a given period of time. Again, acceptable rates vary depending on the
speed of the hardware and response time requirements.

Terminal message or data set record block sizes: These factors, when
combined with I/O rates, provide information on the current load on the network
or DASD subsystem.

Indications of internal virtual storage limits: These vary by software component,
including storage or buffer expansion counts, system messages, and program
abends because of system stalls. In CICS, program fetches on nonresident
programs and system short-on-storage or stress messages reflect this condition.

Paging rates: CICS can be sensitive to a real storage shortage, and paging
rates reflect this shortage. Acceptable paging to DASD rates vary with the
speed of the DASD and response time criteria. Paging rates to expanded
storage are only as important as its effect on processor usage.

Error rates: Errors can occur at any point in an online system. If the errors are
recoverable, they can go unnoticed, but they put an additional load on the
resource on which they are occurring.

You should investigate both system conditions and application conditions.

System conditions

A knowledge of these conditions enables you evaluate the performance of the
system as a whole:

200 CICS TS for 2/OS:

System transaction rate (average and peak)

Internal response time and terminal response time, preferably compared with
transaction rate

Working set, at average and peak transaction rates

Average number of disk accesses per unit time (total, per channel, and per
device)

Processor usage, compared with transaction rate

Number of page faults per second, compared with transaction rate and real
storage

Communication line usage (net and actual)

CICS Performance Guide

» Average number of active CICS tasks
* Number and duration of outages.

Application conditions

These conditions, measured both for individual transaction types and for the total
system, give you an estimate of the behavior of individual application programs.

You should gather data for each main transaction and average values for the total
system. This data includes:

» Program calls per transaction

» CICS storage GETMAINs and FREEMAINs (number and amount)
» Application program and transaction usage

* File control (data set, type of request)

» Terminal control (terminal, number of inputs and outputs)

» Transaction routing (source, target)

» Function shipping (source, target)

* Other CICS requests.

Methods of performance analysis

You can use two methods for performance analysis:

1. Measuring a system under full production load (full-load measurement), to get
all information that is measurable only under high system-loading.

2. Measuring single-application transactions (single-transaction measurement),
during which the system should not carry out any other activities. This gives an
insight into the behavior of single transactions under optimum system
conditions.

Because a system can have a variety of problems, we cannot recommend which
option you should use to investigate the behavior of a system. When in doubt about
the extent of a problem, you should always use both methods.

Rapid performance degradation often occurs after a threshold is exceeded and the

system approaches its ultimate load. You can see various indications only when the
system is fully loaded (for example, paging, short-on-storage condition in CICS, and
so on), and you should usually plan for a full-load measurement.

Bear in mind that the performance constraints might possibly vary at different times
of the day. You might want to run a particular option that puts a particular pressure
on the system only at a certain time in the afternoon.

If a full-load measurement reveals no serious problems, or if a system is not
reaching its expected performance capability under normal operating conditions,
you can then use single-transaction measurement to reveal how individual system
transactions behave and to identify the areas for possible improvement.

Often, because you have no reliable information at the beginning of an investigation
into the probable causes of performance problems, you have to examine and
analyze the whole system.

Before carrying out this analysis, you must have a clear picture of the functions and
the interactions of the following components:

Chapter 11. CICS performance analysis techniques 201

» Operating system supervisor with the appropriate access methods
* CICS management modules and control tables
* VSAM data sets

* DL/I databases

 DB2

« TCP/IP

» External security managers

* Performance monitors

» CICS application programs

* Influence of other regions

» Hardware peripherals (disks and tapes).

In addition, you should collect the following information:

* Does performance fluctuate or is it uniformly bad?

» Are performance problems related to a specific hour, day, week, or month?
* Has anything in the system been changed recently?

* Have all such changes been fully documented?

Performance analysis: full-load measurement

A full-load measurement highlights latent problems in the system. It is important that
full-load measurement lives up to its name, that is, you should make the
measurement when, from production experience, the peak load is reached. Many
installations have a peak load for about one hour in the morning and again in the
afternoon. CICS statistics and various performance tools can provide valuable
information for full-load measurement. In addition to the overall results of these
tools, it may be useful to have the CICS auxiliary trace or RMF active for about one
minute.

CICS auxiliary trace

CICS auxiliary trace can be used to find situations that occur under full load. For
example, all ENQUEUEs that cannot immediately be honored in application
programs result in a suspension of the issuing task. If this frequently happens,
attempts to control the system by using the CEMT master transaction, are not
effective.

Trace is a very heavy overhead. Use trace selectivity options to minimize this
overhead.

RMF

It is advisable to do the RMF measurement without any batch activity. (See
|“Resource measurement facility (RMF)” on page 24{ for a detailed description of this
tool.)

For full-load measurement, the system activity report and the DASD activity report
are important.

The most important values for full-load measurement are:
* Processor usage

* Channel and disk usage

» Disk unit usage

202 CICS TS for z/0S: CICS Performance Guide

» Overlapping of processor with channel and disk activity
* Paging

» Count of start I/O operations and average start 1/0 time
* Response times

» Transaction rates.

You should expect stagnant throughput and sharply climbing response times as the
processor load approaches 100%.

It is difficult to forecast the system paging rate that can be achieved without serious
detriment to performance, because too many factors interact. You should observe
the reported paging rates; note that short-duration severe paging leads to a rapid
increase in response times.

In addition to taking note of the count of start I1/O operations and their average
length, you should also find out whether the system is waiting on one device only.
With disks, for example, it can happen that several frequently accessed data sets
are on one disk and the accesses interfere with each other. In each case, you
should investigate whether a system wait on a particular unit could not be
minimized by reorganizing the data sets.

The RMF DASD activity report includes the following information:

* A summary of all disk information

» Per disk, a breakdown by system number and region

» Per disk, the distribution of the seek arm movements

* Per disk, the distribution of accesses with and without arm movement.

Use IOQ(DASD) option in RMF monitor 1 to show DASD control unit contention.

After checking the relationship of accesses with and without arm movement, for
example, you may want to move to separate disks those data sets that are
periodically very frequently accessed.

Comparison charts

You might wish to consider using a comparison chart to measure key aspects of
your system’s performance before and after tuning changes have been made. A
suggested chart is as follows:

Table 9. Comparison chart

Observations to make Run A Run B Run C Run D
) Number

DL/l transactions

Response

Number
VSAM transactions

Response

DL/I
Response times

VSAM
Most heavily used Number
transaction Response
Average-use Number
transaction Response

Chapter 11. CICS performance analysis techniques 203

Table 9. Comparison chart (continued)

Observations to make Run A Run B Run C Run D

System
Paging rate

CICSs

Maximum
DSA virtual storage

Average

Peak
Tasks

At MXT
Most heavily used Response
DASD Utilization

Response
Average-use DASD —

Utilization

CPU utilization

The use of this type of comparison chart requires the use of TPNS, RMF, and CICS
interval statistics running together for about 20 minutes, at a peak time for your
system. It also requires you to identify the following:

* A representative selection of terminal-oriented DL/I transactions accessing DL/I
databases

* A representative selection of terminal-oriented transactions processing VSAM
files

* The most heavily used transaction

» Two average-use nonterminal-oriented transactions writing data to intrapartition
transient data destinations

* The most heavily used volume in your system
* A representative average-use volume in your system.

To complete the comparison chart for each CICS run before and after a tuning
change, you can obtain the figures from the following sources:

» DL/l transactions: you should first identify a selection of terminal-oriented DL/I
transactions accessing DL/I databases.

* VSAM transactions: similarly, you should first identify a selection of
terminal-oriented transactions processing VSAM files.

* Response times: external response times are available from the TPNS terminal
response time analysis report; internal response times are available from RMF.
The “DL/I” subheading is the average response time calculated at the 99th
percentile for the terminal-oriented DL/I transactions you have previously
selected. The “WVSAM” subheading is the average response time calculated at the
99th percentile for the terminal-oriented VSAM transactions you have previously
selected.

* Paging rate (system): this is from the RMF paging activity report, and is the
figure shown for total system non-VIO non-swap page-ins added to the figure
shown for the total system non-VIO non-swap page-outs. This is the total paging
rate per second for the entire system.

* Tasks: this is from the transaction manager statistics (part of the CICS interval,
end-of-day, and requested statistics). The “Peak” subheading is the figure shown

204 CICS TS for z/0S: CICS Performance Guide

for “Peak Number of Tasks” in the statistics. The “At MXT” subheading is the
figure shown for “Number of Times at Max. Task” in the statistics.

* Most heavily used DASD: this is from the RMF direct access device activity
report, and relates to the most heavily used volume in your system. The
“Response” subheading is the figure shown in the “Avg. Resp. Time” column for
the volume you have selected. The “Utilization” subheading is the figure shown in
the “% Dev. Util.” column for that volume.

* Average-use DASD: this is also from the RMF direct access device activity
report, and relates to a representative average-use volume in your system. The
“Response” subheading is the figure shown in the “Avg. Resp. Time” column for
the volume you have selected. The “Utilization” subheading is the figure shown in
the “% Dev. Util.” column for that volume.

* Processor utilization: this is from the RMF processor activity report.

This chart is most useful when comparing before-and-after changes in performance
while you are tuning your CICS system.

Performance analysis: single-transaction measurement

You can use full-load measurement to evaluate the average loading of the system
per transaction. However, this type of measurement cannot provide you with
information on the behavior of a single transaction and its possible excessive
loading of the system. If, for example, nine different transaction types issue five
start 1/0s (SIOs) each, but the tenth issues 55 SIOs, this results in an average of
ten SIOs per transaction type. This should not cause concern if they are executed
simultaneously. However, an increase of the transaction rate of the tenth transaction
type could possibly lead to poor performance overall.

Sometimes, response times are quite good with existing terminals, but adding a few
more terminals leads to unacceptable degradation of performance. In this case, the
performance problem may be present with the existing terminals, and has simply
been highlighted by the additional load.

To investigate this type of problem, do a full-load measurement as well as a
single-transaction measurement. To be of any use, the single-transaction
measurement must be done when no batch region is running, and there must be no
activity in CICS apart from the test screen. Even the polling of remote terminals
should be halted.

You should measure each existing transaction that is used in a production system
or in a final test system. Test each transaction two or three times with different data
values, to exclude an especially unfavorable combination of data. Document the
sequence of transactions and the values entered for each test as a prerequisite for
subsequent analysis or interpretation.

Between the tests of each single transaction, there should be a pause of several
seconds, to make the trace easier to read. A copy of the production database or
data set should be used for the test, because a test data set containing 100 records
can very often result in completely different behavior when compared with a
production data set containing 100 000 records.

The condition of data sets has often been the main reason for performance
degradation, especially when many segments or records have been added to a
database or data set. Do not do the measurements directly after a reorganization,
because the database or data set is only in this condition for a short time. On the

Chapter 11. CICS performance analysis techniques 205

other hand, if the measurement reveals an unusually large number of disk
accesses, you should reorganize the data and do a further measurement to
evaluate the effect of the data reorganization.

You may feel that single-transaction measurement under these conditions with only
one terminal is not an efficient tool for revealing a performance degradation that
might occur when, perhaps 40 or 50 terminals are in use. Practical experience has
shown, however, that this is usually the only means for revealing and rectifying, with
justifiable expense, performance degradation under full load. The main reason for
this is that it is sometimes a single transaction that throws the system behavior out
of balance. Single-transaction measurement can be used to detect this.

Ideally, single-transaction measurement should be carried out during the final test
phase of the transactions. This gives the following advantages:

* Any errors in the behavior of transactions may be revealed before production
starts, and these can be put right during validation, without loading the production
system unnecessarily.

* The application is documented during the measurement phase. This helps to
identify the effects of later changes.

CICS auxiliary trace

Auxiliary trace is a standard feature of CICS, and gives an overview of transaction
flows so that you can quickly and effectively analyze them.

From this trace, you can find out whether a specified application is running as it is
expected to run. In many cases, it may be necessary for the application
programmer responsible to be called in for the analysis, to explain what the
transaction should actually be doing.

If you have a very large number of transactions to analyze, you can select, in a first
pass, the transactions whose behavior does not comply with what is expected.

If all transactions last much longer than expected, this almost always indicates a
system-wide error in application programming or in system implementation. The
analysis of a few transactions is then sufficient to determine the error.

If, on the other hand, only a few transactions remain in this category, these

transactions should be analyzed next, because it is highly probable that most
performance problems to date arise from these.

206 CICS TS for z/0S: CICS Performance Guide

Chapter 12. Identifying CICS constraints

Major constraints on a CICS system show themselves in the form of external
symptoms, stress conditions and paging being the chief forms. This chapter
describes these symptoms in some detail so that you can recognize them when
your system has a performance problem, and know the ways in which CICS itself
attempts to resolve various conditions.

The fundamental thing that has to be understood is that practically every symptom
of poor performance arises in a system that is congested. For example, if there is a
slowdown in DASD, transactions doing data set activity pile up: there are waits on
strings; there are more transactions in the system, there is therefore a greater
virtual storage demand; there is a greater real storage demand; there is paging;
and, because there are more transactions in the system, the task dispatcher uses
more processor power scanning the task chains. You then get task constraints, your
MXT or transaction class limit is exceeded and adds to the processor overhead
because of retries, and so on.

The result is that the system shows heavy use of all its resources, and this is the
typical system stress. It does not mean that there is a problem with all of them; it
means that there is a constraint that has yet to be found. To find the constraint, you
have to find what is really affecting task life.

If current performance has been determined to be unacceptable, you need to
identify the performance constraints (that is, the causes of the symptoms) so that
they can be tuned. This chapter discusses these constraints in the following
sections:

+ [“Observing response times’|

+ [“Identifying storage stress” on page 209
[Identifying paging problems” on page 211|
[‘Detecting storage violation” on page 212|
[‘Dealing with limit conditions” on page 213|
[‘Identifying performance constraints” on page 214|
[‘Dealing with resource contention” on page 216|

Observing response times

The basic criterion of performance in a production system is response time, but
what is good response time? In straightforward data-entry systems, good response
time implies subsecond response time. In normal production systems, good
response time is measured in the five to ten second range. In scientific,
compute-bound systems or in print systems, good response time can be one or two
minutes.

Good performance, then, depends on a variety of factors including user
requirements, available capacity, system reliability, and application design. Good
performance for one system can be poor performance for another.

When checking whether the performance of a CICS system is in line with the

system’s expected or required capability, you should base this investigation on the
hardware, software, and applications that are present in the installation.

© Copyright IBM Corp. 1983, 2011 207

If, for example, an application requires 100 accesses to a database, a response
time of three to six seconds may be considered to be quite good. If an application
requires only one access, however, a response time of three to six seconds for disk
accesses would need to be investigated. Response times, however, depend on the
speed of the processor, and on the nature of the application being run on the
production system.

You should also observe how consistent the response times are. Sharp variations
indicate erratic system behavior.

The typical way in which the response time in the system may vary with increasing
transaction rate is gradual at first, then deteriorates rapidly and suddenly. The
typical curve shows a sharp change when, suddenly, the response time increases
dramatically for a relatively small increase in the transaction rate.

Response
time

C Unacceptable (poor) response time

B Acceptable response time

A Good response time

Increasing load or
decreasing resource availability

Figure 53. Graph to show the effect of response time against increasing load

For stable performance, it is necessary to keep the system operating below this
point where the response time dramatically increases. In these circumstances, the
user community is less likely to be seriously affected by the tuning activities being
undertaken by the DP department, and these changes can be done in an unhurried
and controlled manner.

Response time can be considered as being made up of queue time and service
time. Service time is generally independent of usage, but queue time is not. For
example, 50% usage implies a queue time approximately equal to service time, and
80% usage implies a queue time approximately four times the service time. If
service time for a particular system is only a small component of the system
response, for example, in the processor, 80% usage may be acceptable. If it is a
greater portion of the system response time, for example, in a communication line,
50% usage may be considered high.

208 CICS TS for z/0S: CICS Performance Guide

If you are trying to find the response time from a terminal to a terminal, you should
be aware that the most common “response time” obtainable from any aid or tool
that runs in the host is the “internal response time.” Trace can identify only when
the software in the host, that is, CICS and its attendant software, first “sees” the
message on the inbound side, and when it last “sees” the message on the
outbound side.

Internal response time gives no indication of how long a message took to get from
the terminal, through its control unit, across a line of whatever speed, through the
communication controller (whatever it is), through the communication access
method (whatever it is), and any delays before the channel program that initiated
the read is finally posted to CICS. Nor does it account for the time it might take for
CICS to start processing this input message. There may have been lots of work for
CICS to do before terminal control regained control and before terminal control
even found this posted event.

The same is true on the outbound side. CICS auxiliary trace knows when the
application issued its request, but that has little to do with when terminal control
found the request, when the access method ships it out, when the controllers can
get to the device, and so on.

While the outward symptom of poor performance is overall bad response, there are
progressive sets of early warning conditions which, if correctly interpreted, can ease
the problem of locating the constraint and removing it.

In the advice given so far, we have assumed that CICS is the only major program
running in your system. If batch programs or other online programs are running
simultaneously with CICS, you must ensure that CICS receives its fair share of the
system resources and that interference from other regions does not seriously
degrade CICS performance.

Identifying storage stress

Stress is the term used in CICS for a shortage of free space in one of the dynamic
storage areas.

Storage stress can be a symptom of other resource constraints that cause CICS
tasks to occupy storage for longer than is normally necessary, or of a flood of tasks
which simply overwhelms available free storage, or of badly designed applications
that require unreasonably large amounts of storage.

Controlling storage stress

Before CICS/ESA Version 3, all non-resident, not-in-use programs were removed
when a GETMAIN request could not be satisfied. Since CICS/ESA Version 3,
storage stress has been handled as follows.

Nonresident, not-in-use programs may be deleted progressively with decreasing
free storage availability as CICS determines appropriate, on a least-recently-used
basis. The dispatching of new tasks is also progressively slowed as free storage
approaches a critically small amount. This self-tuned activity tends to spread the
cost of managing storage. There may be more program loading overall, but the
heavy overhead of a full program compression is not incurred at the critical time.

Chapter 12. Identifying CICS constraints 209

The loading or reloading of programs is handled by CICS with an MVS subtask.
This allows other user tasks to proceed if a processor of the MVS image is
available and even if a page-in is required as part of the program load.

User runtime control of storage usage is achieved through appropriate use of MXT
and transaction class limits. This is necessary to avoid the short-on-storage
condition that can result from unconstrained demand for storage.

Short-on-storage condition

CICS reserves a minimum number of free storage pages for use only when there is
not enough free storage to satisfy an unconditional GETMAIN request even when
all, not-in-use, nonresident programs have been deleted.

Whenever a request for storage results in the number of contiguous free pages in
one of the dynamic storage areas falling below its respective cushion size, or failing
to be satisfied even with the storage cushion, a cushion stress condition exists.
Details are given in the storage manager statistics (“Times request suspended”,
“Times cushion released”). CICS attempts to alleviate the storage stress situation by
releasing programs with no current user and slowing the attachment of new tasks. If
these actions fail to alleviate the situation or if the stress condition is caused by a
task that is suspended for SOS, a short-on-storage condition is signaled. This is
accompanied by message DFHSM0131 or DFHSMO0133.

Removing unwanted data set name blocks

One of the CICS dynamic storage areas, the ECDSA, is also used for data set
name blocks, one of which is created for every data set opened by CICS file
control. These DSN blocks are recovered at a warm or emergency restart. If you
have an application that creates a large number of temporary data sets, all with a
unique name, the number of DSN blocks can increase to such an extent that they
can cause a short-on-storage condition.

If you have application programs that use temporary data sets, with a different
name for every data set created, it is important that your programs remove these
after use. Seelthe CICS System Programming Reference for information about how
you can use the SET DSNAME command to remove unwanted temporary data sets
from your CICS regions.

Language Environment run time options for AMODE(24)
programs

The default Language Environment run time options for CICS are (among other
things) ALL31(ON) and STACK(ANY). This means that all programs must run above
the line (AMODE(31)) in an Language Environment environment. To allow
AMODE(24) programs to run in an Language Environment environment,
ALL31(OFF) and STACK(BELOW) can be specified. However, if you globally
change these options so that all programs can use them, a lot of storage will be put
below the line, which can cause a short-on-storage condition.

Purging of tasks

If a CICS task is suspended for longer than its DTIMOUT value, it may be purged if
SPURGE=YES is specified on the RDO transaction definition. That is, the task is
abended and its resources freed, thus allowing other tasks to use those resources.
In this way, CICS attempts to resolve what is effectively a deadlock on storage.

210 CICS TS for z/0OS: CICS Performance Guide

CICS hang

If purging tasks is not possible or not sufficient to solve the problem, CICS ceases
processing. You must then either cancel and restart the CICS system, or initiate or
allow an XRF takeover.

Identifying paging problems

The virtual storage of a processor may far exceed the size of the central storage
available in the configuration. Any excess must be maintained in auxiliary storage
(DASD), or in expanded storage. This virtual storage occurs in blocks of addresses
called “pages”. Only the most recently referenced pages of virtual storage are
assigned to occupy blocks of physical central storage. When reference is made to a
page of virtual storage that does not appear in central storage, the page is brought
in from DASD or expanded storage to replace a page in central storage that is not
in use and least recently used.

The newly referenced page is said to have been “paged in”. The displaced page
may need to be “paged out” if it has been changed.

It is the page-in rate that is of primary concern, because page-in activity occurs
synchronously (that is, an MVS task stops until the page fault is resolved). Page-out
activity is overlapped with CICS processing, so it does not appreciably affect CICS
throughput.

A page-in from expanded storage incurs only a small processor usage cost, but a
page-in from DASD incurs a time cost for the physical /0 and a more significant
increase in processor usage.

Thus, extra DASD page-in activity slows down the rate at which transactions flow
through the CICS system, that is, transactions take longer to get through CICS, you
get more overlap of transactions in CICS, and so you need more virtual and real
storage.

If you suspect that a performance problem is related to excessive paging, you can
use RMF to obtain the paging rates.

Consider controlling CICS throughput by using MXT and transaction class limits in
CICS on the basis that a smaller number of concurrent transactions requires less
real storage, causes less paging, and may be processed faster than a larger
number of transactions.

When a CICS system is running with transaction isolation active, storage is
allocated to user transactions in multiples of 1MB. This means that the virtual
storage requirement for a CICS system with transaction isolation enabled is very
large. This does not directly affect paging which only affects those 4K byte pages
that have been touched. More real storage is required in ELSQA, however, and for
more information on transaction isolation and real storage see f‘AIIocating real|
Istorage when using transaction isolation” on page 370

What is an ideal CICS paging rate from DASD? Less than one page-in per second
is best to maximize the throughput capacity of the CICS region. Anything less than
five page-ins per second is probably acceptable; up to ten may be tolerable. Ten
per second is marginal, more is probably a major problem. Because CICS
performance can be affected by the waits associated with paging, you should not
allow paging to exceed more than five to ten pages per second.

Chapter 12. Identifying CICS constraints 211

Note: The degree of sensitivity of CICS systems to paging from DASD depends on
the transaction rate, the processor loading, and the average internal lifetime
of the CICS tasks. An ongoing, hour-on-hour rate of even five page-faults per
second may be excessive for some systems, particularly when you realize
that peak paging rates over periods of ten seconds or so could easily be four
times that figure.

What paging rates are excessive on various processors and are these rates
operating-system dependent? Excessive paging rates should be defined as those
which cause excessive delays to applications. The contribution caused by the
high-priority paging supervisor executing instructions and causing applications to
wait for the processor is probably a minor consideration as far as overall delays to
applications are concerned. Waiting on a DASD device is the dominant part of the
overall delays. This means that the penalty of “high” paging rates has almost
nothing to do with the processor type.

CICS systems are usually able to deliver much better response times with
somewhat better processor utilization when the potential of large amounts of central
and expanded storage is exploited by keeping more data and programs in memory.

Program loading and paging
CICS employs MVS load under an MVS subtask to load programs. This allows the
use of the library lookaside function of MVS to eliminate most DASD 1/Os by
keeping copies of programs in an MVS controlled dataspace exploiting expanded
storage.

A page-in operation causes the MVS task which requires it to stop until the page
has been retrieved. If the page is to be retrieved from DASD, this has a significant
effect. When the page can be retrieved from expanded storage, the impact is only a
relatively small increase in processor usage.

The loading of a program into CICS storage can be a major cause of page-ins.
Because this is carried out under a subtask separate from CICS main activity, such
page-ins do not halt most other CICS activities.

Detecting storage violation

CICS can detect storage violations when:

« The duplicate storage accounting area (SAA) or the initial SAA of a TIOA storage
element has become corrupted.

* The leading storage check zone or the trailing storage check zone of a user task
storage has become corrupted.

A storage violation can occur in two basic situations:

1. When CICS detects an error during its normal processing of a FREEMAIN
request for an individual element of a TIOA storage, and finds that the two
storage check zones of the duplicate SAA and the initial SAA are not identical.

2. CICS also detects user violations involving user task storage by checking the
storage check zones of an element of user task storage following a FREEMAIN
command.

When a storage violation is detected, an exception trace entry is made in the

internal trace table. A message (DFHSMO0102) is issued and a CICS system dump
follows if the dump option is switched on.

212 CICS TS for z/0S: CICS Performance Guide

Storage violations can be reduced considerably if CICS has storage protection, and
transaction isolation, enabled.

See [the CICS Problem Determination Guidg for further information about
diagnosing and dealing with storage violations.

Dealing with limit conditions

The main limit conditions or constraints that can occur in a CICS system include
those listed at the beginning of this chapter. Stress conditions generally tell you that
certain limiting conditions have been reached. If these conditions occur, additional
processing is required, and the transactions involved have to wait until resources
are released.

To summarize, limit conditions can be indicated by the following:

» Virtual storage conditions (“short-on-storage”: SOS). This item in the CICS
storage manager statistics shows a deficiency in the allocation of virtual storage
space to the CICS region.

In most circumstances, allocation of more virtual storage does not in itself cause
a degradation of performance. You should determine the reason for the condition
in case it is caused by some form of error. This could include failure of
applications to free storage (including temporary storage), unwanted multiple
copies of programs or maps, storage violations, and high activity of nonresident
exception routines caused by program or hardware errors.

All new applications should be written to run above the 16MB line. The dynamic
storage areas above the 16MB line can be expanded up to the 2GB limit of
31-bit addressing. The dynamic storage areas below the 16MB line are limited to
less than the region size, which is less than 16MB.

* Number of simultaneous tasks (MXT and transaction class limit) reached (shown
in the transaction manager statistics).

* Maximum number of VTAM receive-any RPLs in use (shown in the VTAM
statistics).

* ‘Wait-on-string’ and associated conditions for VSAM data sets (shown in the file
control statistics).

Check how frequently the limit conditions occur. In general:

 If no limit conditions occur, this implies that too many resources have been
allocated. This is quite acceptable if the resource is inexpensive, but not if the
resource is both overallocated and of more use elsewhere.

* Infrequent occurrence of a limit condition is an indication of good usage of the
particular resource. This usually implies a healthy system.

» Frequent occurrence (greater than 5% of transactions) usually reveals a problem,
either directly or indirectly, that needs action to prevent more obvious signs of
poor performance. If the frequency is greater than about 10%, you may have to
take some action quickly because the actions taken by CICS itself (dynamic
program storage compression, release of storage cushion, and so on) can have
a perceptible effect on performance.

Your own actions should include:
— Checking for errors

— Raising the limit, provided that it does not have a degrading effect on other
areas

— Allocating more resources to remove contention

Chapter 12. Identifying CICS constraints 213

— Checking recovery usage for contention.

Identifying performance constraints

When you are dealing with limit conditions, you may find it helpful to check the
various points where performance constraints can exist in a system. These points
are summarized below under hardware and software constraints.

Hardware constraints

1.

Processor cycles. 1t is not uncommon for transactions to execute more than one
million instructions. To execute these instructions, they must contend with other
tasks and jobs in the system. At different times, these tasks must wait for such
activities as file 1/0. Transactions give up their use of the processor at these
points and must contend for use of the processor again when the activity has
completed. Dispatching priorities affect which transactions or jobs get use of the
processor, and batch or other online systems may affect response time through
receiving preferential access to the processor. Batch programs accessing online
databases also tie up those databases for longer periods of time if their
dispatching priority is low. At higher usages, the wait time for access to the
processor can be significant.

Real storage (working set). Just as transactions must contend for the processor,
they also must be given a certain amount of real storage. A real storage
shortage can be particularly significant in CICS performance because a normal
page fault to acquire real storage results in synchronous 1/O. The basic design
of CICS is asynchronous, which means that CICS processes requests from
multiple tasks concurrently to make maximum use of the processor. Most paging
I/O is synchronous and causes the MVS task that CICS is using to wait, and
that part of CICS cannot do any further processing until the page operation
completes. Most, but not all, of CICS processing uses a single MVS task (called
‘QUASI in the dispatcher statistics).

Database-associated hardware (I/0) contention. When data is being accessed
to provide information that is required in a transaction, an 1/O operation passes
through the processor, the processor channel, a disk control unit, the head of
string on a string of disks, and the actual disk device where the data resides. If
any of these devices are overused, the time taken to access the data can
increase significantly. This overuse can be the result of activity on one data set,
or on a combination of active data sets. Error rates also affect the usage and
performance of the device. In shared DASD environments, contention between
processors also affects performance. This, in turn, increases the time that the
transaction ties up real and virtual storage and other resources.

The use of large amounts of central and expanded storage by using very large
data buffers, and by keeping programs in storage, can significantly reduce DB
I/O contention and somewhat reduce processor utilization while delivering
significant internal response time benefits.

Network-associated hardware contention. The input and output messages of a
transaction must pass from the terminal to a control unit, a communications link,
a network controller, a processor channel, and finally the processor. Just as
overuse of devices to access data can affect response time, so excessive use
of network resources can cause performance degradation. Error rates affect
performance as well. In some cases, the delivery of the output message is a
prerequisite to freeing the processor resources that are accessed, and
contention can cause these resources to be tied up for longer periods.

214 CICS TS for z/0S: CICS Performance Guide

Software constraints

1. Database design. A data set or database needs to be designed to the needs of
the application it is supporting. Such factors as the pattern of access to the data
set (especially whether it is random or sequential), access methods chosen, and
the frequency of access determine the best database design. Such data set
characteristics as physical record size, blocking factors, the use of alternate or
secondary indexes, the hierarchical or relational structure of database
segments, database organization (HDAM, HIDAM, and so on), and pointer
arrangements are all factors in database performance.

The length of time between data set reorganizations can also affect
performance. The efficiency of accesses decreases as the data set becomes
more and more fragmented. This fragmentation can be kept to the minimum by
reducing the length of time between data set reorganizations.

2. Network design. This item can often be a major factor in response time because
the network links are much slower than most components of an online system.
Processor operations are measured in nanoseconds, line speeds in seconds.
Screen design can also have a significant effect on overall response time. A
1200-byte message takes one second to be transmitted on a relatively
high-speed 9600 bits-per-second link. If 600 bytes of the message are not
needed, half a second of response time is wasted. Besides screen design and
size, such factors as how many terminals are on a line, the protocols used
(SNA, bisynchronous), and full-or half-duplex capabilities can affect
performance.

3. Use of specific software interfaces or serial functions. The operating system,
terminal access method, database manager, data set access method, and CICS
must all communicate in the processing of a transaction. Only a given level of
concurrent processing can occur at these points, and this can also cause a
performance constraint. Examples of this include the VTAM receive any pool
(RAPOOL), VSAM data set access (strings), CICS temporary storage, CICS
transient data, and CICS intercommunication sessions. Each of these can have
a single or multiserver queueing effect on a transaction’s response time, and
can tie up other resources by slowing task throughput.

One useful technique for isolating a performance constraint in a CICS system with
VTAM is to use the IBMTEST command issued from a user’s terminal. This terminal
must not be in session with CICS, but must be connected to VTAM.

You enter at a VTAM terminal:
IBMTEST (n) (,data)

where n is the number of times you want the data echoed, and data may consist of
any character string. If you enter no data, the alphabet and the numbers zero
through nine are returned to the terminal. This command is responded to by VTAM.

IBMTEST is an echo test designed to give the user a rough idea of the VTAM
component of terminal response time. If the response time is fast in a
slow-response system, the constraint is not likely to be any component from VTAM
onward. If this response is slow, VTAM or the network may be the reason. This sort
of deductive process in general can be useful in isolating constraints.

To avoid going into session with CICS, you may have to remove APPLID= from the
LU statement or CONNECT=AUTO from the TERMINAL definition.

Chapter 12. Identifying CICS constraints 215

Dealing with resource contention

The major resources used or managed by CICS consist of the following:
* Processor

* Real storage

* Virtual storage

» Software (specification limits)

* Channels

« Control units

* Lines

* Devices

» Sessions to connected CICS systems.

Contention at lower levels prevents full use of higher-level resources. To avoid or
reduce resource contention, you can:

* Minimize or eliminate the use of a resource by:
— Reordering, relocating, or reducing its size
— Redesign, rewriting, rescheduling, or reducing processing time
— Education, eliminating a function, or controlling its usage.
» Give the resource more capacity
» Exchange one resource with another:
— Processor with virtual storage
— Real storage with paging I/O
— Paging 1/O with program library 1/0
— Priorities of various end-users with each other
— CICS response times with batch throughput
— Batch throughput with more DP operators.

Two sets of symptoms and solutions are provided in this chapter. The first set
provides suggested solutions for poor response (see [‘Solutions for poor response|
, and the second set provides suggested solutions for a variety of resource
contention problems (see [‘Symptoms and solutions for particular resource|
fcontention problems” on page 217).

Solutions for poor response time

shows four levels of response time, in decreasing order of severity. The
major causes are shown for each level together with a range of suggested
solutions. Your first step is to check the causes by following the advice given in
|“Assessing the performance of your system” on page 200 When you have
identified the precise causes, the relevant checklist in [Chapter 14, “Performance]
kchecklists,” on page 225|tells you what solutions are available and where to find
information in Part 4 of this book on how to implement the solutions.

Table 10. CICS response time checklist

Major Causes Overall Solution

Level 1: Poor response at all loads for all transactions

High level of paging Reduce working set, or allocate more real
storage

216 CICS TS for z/0S: CICS Performance Guide

Table 10. CICS response time checklist (continued)

Major Causes

Overall Solution

Very high usage of major resources

Reconsider system resource requirements
and redesign system

Check for application errors and resource
contention

Level 2: Poor response at medium and high loads

High level of paging

Reduce working set, or allocate more real
storage

High processor usage

Reduce pathlength, or increase processor
power

High DB or data set usage

Reorganize data sets, or reduce data
transfer, or increase capacity

High communication network usage

Reduce data transfer, or increase capacity

TP or 1/0O access-method constraint

Increase buffer availability

CICS limit values exceeded

Change operands, or provide more
resources, or check if errors in application

Level 3: Poor response for certain transact

ions only

Identify common characteristics

As for level 2

Lines or terminal usage

Increase capacity, or reduce data transfer, or
change transaction logic

Data set usage

Change data set placement buffer allocations
or change enqueue logic or data set design

High storage usage

Redesign or tune applications

Same subprograms used by transactions

Redesign or tune application subprograms

Same access method or CICS features used
by transactions

Reallocate resource or change application.
Reevaluate use of feature in question

Limit conditions

Reallocate resource or change application

Level 4: Poor response for certain terminal

S

Check network loading as appropriate

Increase capacity of that part of network

Check operator techniques

Revise terminal procedures

Check CEDA terminal definitions

Redefine CEDA terminal definitions

Symptoms and solutions for particular resource contention problems

This section presents a general range of solutions for each type of constraint. You

should:
1.

Confirm that your diagnosis of the type of constraint is correct, by means of

detailed performance analysis. [‘Metho

ds of performance analysis” on page 201|

describes various techniques.

2. Read|Chapter 13, “Tuning your CICS system,” on page 221|for general advice
on performance tuning.

3. See the relevant sections in Part 4 of this book for detailed information on
applying the various solutions.

4. Improve virtual storage exploitation. This requires:

» Large data buffers above the 16MB
Programs that run above the 16MB

line or in Hiperspace
line

Chapter 12. Identifying CICS constraints 217

» Large amounts of central and expanded storage to support the virtual storage
exploitation.

Such a system can deliver better internal response times, while minimizing
DASD I/O constraint and reducing processor utilization.

DASD constraint

Symptoms:
» Slow response times (the length of the response time depends on the number of
I/0O operations, with a longer response time when batch mode is active)

* High DSA utilization

* High paging rates

* MXT limit frequently reached
* SOS condition often occurs.

Solutions:
* Reduce the number of I/O operations
* Tune the remaining I/O operations
» Balance the 1/O operations load.
See[‘DASD tuning” on page 240| for suggested solutions.

Communications network constraint

Symptoms:
+ Slow response times

* Good response when few terminals are active on a line, but poor response when
many terminals are active on that line

» Big difference between internal response time and terminal response time.

Solutions:

* Reduce the line utilization.

* Reduce delays in data transmission.
» Alter the network.

Remote systems constraints

Symptoms:
» SOS condition or MXT occur when there is a problem with a connected region.
» CICS takes time to recover when the problem is fixed.

Solutions:

» Control the amount of queuing which takes place for the use of the connections
to the remote systems.

» Improve the response time of the remote system.
Virtual storage constraint

Symptoms:

* Slow response times

* Multiple loads of the same program

* Increased I/O operations against program libraries

218 CICS TS for z/0S: CICS Performance Guide

* High paging rates
* SOS condition often occurs.

Solutions:

* Tune the MVS system to obtain more virtual storage for CICS (increase the
region size).

* Expand or make more efficient use of the dynamic storage area.

See the ['Virtual storage above and below 16MB line performance checklist” orl
|page 226(for a detailed list of suggested solutions.

Real storage constraint

Symptoms:

* High paging rates

* Slow response times

* MXT limit frequently reached
+ SOS condition often occurs.

Solutions:

* Reduce the demands on real storage

* Tune the MVS system to obtain more real storage for CICS
* Obtain more central and expanded storage.

See the [‘Real storage performance checklist” on page 227] for a detailed list of
suggested solutions.

Processor cycles constraint

Symptoms:

» Slow response times

» Low-priority transactions respond very slowly
» Low-priority work gets done very slowly.

Solutions:
* Increase the dispatching priority of CICS.
* Reevaluate the relative priorities of operating system jobs.
* Reduce the number of MVS regions (batch).
* Reduce the processor utilization for productive work.
» Use only the CICS facilities that you really require.
» Turn off any trace that is not being used.
* Minimize the data being traced by reducing the:
— Scope of the trace
— Frequency of running trace.
» Obtain a faster processor.

See the |“Processor cycles performance checklist” on page 228| for a detailed list of

suggested solutions.

Chapter 12. Identifying CICS constraints

219

220 CICS TS for z/0S: CICS Performance Guide

Chapter 13. Tuning your CICS system

When you have identified specific constraints, you will have identified the system
resources that need to be tuned. The three major steps in tuning a system are:

1. Determine acceptable tuning trade-offs (see [‘Determining acceptable tuning|
trade-offs”)

2. Make the change to the system (see [‘Making tuning changes to your system’)

3. Review the results of tuning (see [‘Reviewing the results of tuning” on page|
222).

Determining acceptable tuning trade-offs

The art of tuning can be summarized as finding and removing constraints. In most
systems, the performance is limited by a single constraint. However, removing that
constraint, while improving performance, inevitably reveals a different constraint,
and you might often have to remove a series of constraints. Because tuning
generally involves decreasing the load on one resource at the expense of
increasing the load on a different resource, relieving one constraint always creates
another.

A system is always constrained. You do not simply remove a constraint; you can
only choose the most satisfactory constraint. Consider which resources can accept
an additional load in the system without themselves becoming worse constraints.

Tuning usually involves a variety of actions that can be taken, each with its own
trade-off. For example, if you have determined virtual storage to be a constraint,
your tuning options may include reducing buffer allocations for data sets, or

reducing terminal scan delay (ICVTSD) to shorten the task life in the processor.

The first option increases data set I/O activity, and the second option increases
processor usage. If one or more of these resources are also constrained, tuning
could actually cause a performance degradation by causing the other resource to
be a greater constraint than the present constraint on virtual storage.

Making tuning changes to your system

The next step in the tuning process is to make the actual system modifications that
are intended to improve performance. You should consider several points when
adjusting the system:

* Tuning is the technique of making small changes to the system’s resource
allocation and availability to achieve relatively large improvements in response
time.

» Tuning is not always effective. If the system response is too long and all the
system resources are lightly used, you see very little change in the CICS
response times. (This is also true if the wrong resources are tuned.) In addition, if
the constraint resource, for example, line capacity, is being fully used, the only
solution is to provide more capacity or redesign the application (to transmit less
data, in the case of line capacity).

* Do not tune just for the sake of tuning. Tune to relieve identified constraints. If
you tune resources that are not the primary cause of performance problems, this
has little or no effect on response time until you have relieved the major
constraints, and it may actually make subsequent tuning work more difficult. If

© Copyright IBM Corp. 1983, 2011 221

there is any significant improvement potential, it lies in improving the
performance of the resources that are major factors in the response time.

* In general, tune major constraints first, particularly those that have a significant
effect on response time. Arrange the tuning actions so that items having the
greatest effect are done first. In many cases, one tuning change can solve the
performance problem if it addresses the cause of the degradation. Other actions
may then be unnecessary. Further, improving performance in a major way can
alleviate many user complaints and allow you to work in a more thorough way.
The 80/20 rule applies here; a small number of system changes normally
improves response time by most of the amount by which it can be improved,
assuming that those changes address the main causes of performance problems.

* Make one tuning change at a time. If two changes are made at the same time,
their effects may work in opposite directions and it may be difficult to tell which of
them had a significant effect.

» Change allocations or definitions gradually. For example, when reducing the
number of resident programs in a system, do not change all programs in a
system from RES=YES to RES=NO at once. This could cause an unexpected
lengthening of response times by increasing storage usage because of
fragmentation, and increasing processor usage because of higher program
loading activity. If you change a few programs at a time, starting with the
lesser-used programs, this can give you a better idea of the overall results.

The same rule holds true for buffer and string settings and other data set
operands, transaction and program operands, and all resources where the
operand can be specified individually for each resource. For the same reason, do
not make large increases or decreases in the values assigned to task limits such
as MXT.

» Continue to monitor constraints during the tuning process. Because each
adjustment changes the constraints in a system, these constraints vary over time.
If the constraint changes, tuning must be done on the new constraint because
the old one is no longer the restricting influence on performance. In addition,
constraints may vary at different times during the day.

» Put fallback procedures in place before starting the tuning process. As noted
earlier, some tuning can cause unexpected performance results. If this leads to
poorer performance, it should be reversed and something else tried. If previous
definitions or path designs were not saved, they have to be redefined to put the
system back the way it was, and the system continues to perform at a poorer
level until these restorations are made. If the former setup is saved in such a
way that it can be recalled, back out of the incorrect change becomes much
simpler.

Reviewing the results of tuning

After each adjustment has been done, review the performance measurements that
have been identified as the performance problem to verify that the desired
performance changes have occurred and to quantify that change. If performance
has improved to the point that service level agreements are being met, no more
tuning is required. If performance is better, but not yet acceptable, investigation is
required to determine the next action to be taken, and to verify that the resource
that was tuned is still a constraint. If it is not still a constraint, new constraints need
to be identified and tuned. This is a return to the first step of the tuning process,
and you should repeat the next steps in that process until an acceptable
performance level is reached.

222 CICS TS for z/0S: CICS Performance Guide

Part 4. Improving the performance of a CICS system

— Important

Always tune DASD, the network, and the overall MVS system before tuning
any individual CICS subsystem through CICS parameters.

Also review your application code before any further tuning

[Chapter 14, “Performance checklists,” on page 225|itemizes the actions you can
take to tune the performance of an operational CICS system.

The other chapters in this part contain the relevant performance tuning guidelines
for the following aspects of CICS:

+ [Chapter 15, “MVS and DASD: improving performance,” on page 231|

+ [Chapter 16, “Networking and VTAM: improving performance,” on page 243
+ [Chapter 17, “CICS Dispatcher: Performance and Tuning,” on page 261|
[Chapter 18, “CICS Web support: performance and tuning,” on page 265|
[Chapter 19, “VSAM and file control: improving performance,” on page 271|

« [Chapter 20, “Java applications using a Java virtual machine (JVM): improving|
performance,” on page 301|

[Chapter 21, “Database management for performance,” on page 329

[Chapter 22, “Logging and journaling: performance considerations,” on page 339
[Chapter 23, “Virtual and real storage: performance considerations,” on page 353
[Chapter 24, “MRO and ISC: performance considerations,” on page 373]
[Chapter 25, “Programming: performance considerations,” on page 383|

+ [Chapter 26, “CICS facilities: performance considerations,” on page 389

« [Chapter 27, “Improving CICS startup and normal shutdown time,” on page 407

© Copyright IBM Corp. 1983, 2011 223

224 CICS TS for z/0S: CICS Performance Guide

Chapter 14. Performance checklists

The following checklists provide a quick reference to options that you can adjust to
relieve different constraints. They assume that you have identified the exact cause
of an existing constraint; they should not be used for random tuning exercises.

There are four checklists, corresponding to four of the main contention areas
described in|Chapter 12, “Identifying CICS constraints,” on page 207 |

1. 1/0O contention — this applies to data set and database subsystems, as well as
to the data communications network (see [‘Input/output contention performance]

checklist’)

2. Virtual storage above and below the 16MB line (see|“Virtual storage above and|
[oelow 16MB line performance checklist” on page 226)

3. Real storage (see |“Rea| storage performance checklist” on page 227b
4. Processor cycles (see |“Processor cycles performance checklist” on page 228b.

The checklists are in the sequence of low-level to high-level resources, and the
items are ordered from those that probably have the greatest effect on performance
to those that have a lesser effect, from the highest likelihood of being a factor in a
normal system to the lowest, and from the easiest to the most difficult to implement.

Before taking action on a particular item, you should review the item to:

* Determine whether the item is applicable in your particular environment
» Understand the nature of the change

 |dentify the trade-offs involved in the change.

Input/output contention performance checklist

Note:
Ideally, 1/0 contention should be reduced by using very large data buffers and
keeping programs in storage. This would require adequate central and
expanded storage, and programs that can be loaded above the 16MB line

Item Page
VSAM considerations

Review use of LLA 238
Implement Hiperspace buffers 285
Review/increase data set buffer allocations within 281
LSR

Use data tables when appropriate 288

Database considerations
Replace DL/I function shipping with IMS/ESA DBCTL [329

facility

Reduce/replace shared database access to online 329
data sets

Review DB2 threads and buffers 332
Journaling

Increase activity keypoint frequency (AKPFREQ)
value

© Copyright IBM Corp. 1983, 2011 225

Item Page

Terminals, VTAM and SNA.

Implement terminal output compression exit
Increase concurrent VTAM inputs

Increase concurrent VTAM logon/logoffs
Minimize SNA terminal data flows

Reduce SNA chaining

Miscellaneous

Reduce DFHRPL library contention
Review temporary storage strings
Review transient data strings

Virtual storage above and below 16MB line performance checklist

— Note:
The lower the number of concurrent transactions in the system, the lower the
usage of virtual storage. Therefore, improving transaction internal response
time decreases virtual storage usage. Keeping programs in storage above the
16MB line, and minimizing physical 1/0Os makes the largest contribution to
well-designed transaction internal response time improvement.

Item Page
CICS region

Increase CICS region size
Reorganize program layout within region 368
Split the CICS region
DSA sizes

Specify optimal size of the dynamic storage areas
upper limits (DSALIM, EDSALIM)

Adjust maximum tasks (MXT)

Control certain tasks by transaction class

Put application programs above 16MB line

EEEE

Database considerations

Increase use of DBCTL and reduce use of shared
database facility

Replace DL/I function shipping with IMS DBCTL
facility

Review use of DB2 threads and buffers 332
Applications

Use PL/I shared library facility
Journaling

Increase activity keypoint frequency (AKPFREQ)
value

Terminals, VTAM and SNA

Reduce VTAM input message size 245

226 CICS TS for z/0S: CICS Performance Guide

Iltem

Reduce concurrent VTAM inputs

Reduce terminal scan delay

Discourage use of MSGINTEG and PROTECT
Reduce concurrent VTAM logon/logoffs

v
Y
«Q
']

246

N
)]
N

Reduce AIQMAX setting for autoinstall 256
MRO/ISC considerations

Implement MVS cross-memory services with MRO
Implement MVS cross-memory services with shared
database programs

SSL (Secure Sockets Layer)

Increase CICS region size
JVMs

Tune the JVM initialization options

Miscellaneous

Reduce use of aligned maps

Prioritize transactions

Use only required CICS recovery facilities
Recycle job initiators with each CICS startup

=
o
—

N
W
[¢)]

Real storage performance checklist

Note:
Adequate central and expanded storage is vital to achieving good performance
with CICS.

Item

MVS considerations

Make CICS nonswappable

Move CICS code to the LPA/ELPA

N
o
O «Q
(1]

VSAM considerations

Review the use of Hiperspace buffers
Use VSAM LSR where possible
Review the number of VSAM buffers
Review the number of VSAM strings

286

()
(o]
—_

w
[o]
\S]

Task control considerations

Adjust maximum tasks (MXT)
Control certain tasks by transaction class 358

MRO/ISC considerations

Implement MVS cross-memory services with MRO
Implement MVS cross-memory services with shared
database programs

Use CICS intercommunication facilities

W
Ny

[
N

Database considerations

Chapter 14. Performance checklists 227

Item Page
Replace DL/I function shipping with IMS DBCTL
facility

Review use of DB2 buffers and threads

Temporary storage and transient data

Reduce temporary storage strings or buffers 389
Reduce transient data strings or buffers 394
Journaling

Increase activity keypoint frequency (AKPFREQ)

value

Terminal, VTAM and SNA

Reduce terminal scan delay
Reduce concurrent VTAM inputs 246
Reduce VTAM input message size 245
Prioritize transactions
Reduce concurrent VTAM logon/logoffs
Applications

Use PL/I shared library facilities 384
Miscellaneous

Decrease region exit interval 236
Reduce trace table size 400
Use only required CICS recovery facilities 401

Processor cycles performance checklist

Note:
Minimizing physical I/Os by employing large data buffers and keeping
programs in storage reduces processor use, if adequate central and expanded
storage is available.

Item Page
General
Reduce or turn off CICS trace

Terminal, VTAM and SNA
Implement VTAM high performance option processing [248
Increase terminal scan delay
Minimize SNA terminal data flows
Reduce SNA chaining

Task control considerations

Adjust maximum tasks (MXT)

Control certain tasks by transaction class
Define CICS maps with device suffixes

358

228 CICS TS for z/0S: CICS Performance Guide

Item Page
MRO/ISC considerations

Implement MVS cross-memory services with MRO
Implement MRO fastpath facilities
Implement MVS cross-memory services with shared (329
database programs

Use CICS intercommunication facilities 7

K

Database considerations

Journaling
Increase activity keypoint frequency (AKPFREQ)
value

Temporary storage and transient data
Increase temporary storage queue pointer allocations (389

Increase use of main temporary storage 389
Review the use of CICS transient data facilities 394
Miscellaneous

Use only required CICS monitoring facilities
Review use of required CICS recovery facilities
Review use of required CICS security facilities
Increase region exit interval

Review use of program storage

Prioritize transactions

Chapter 14. Performance checklists 229

230 CICS TS for z/0S: CICS Performance Guide

Chapter 15. MVS and DASD: improving performance

Tuning CICS for virtual storage under MVS depends on the following main
elements:

* MVS systems tuning
* VTAM tuning

» CICS tuning

* VSAM tuning.

Because tuning is a top-down activity, you should already have made a vigorous
effort to tune MVS before tuning CICS. Your main effort to reduce virtual storage
constraint and to get relief should be concentrated on reducing the life of the
various individual transactions; in other words, shortening task life.

The installation of a faster processor can cause the current instructions to be
executed faster and, therefore, reduce task life (internal response time), because
more transactions can be processed in the same period of time. Installing faster
DASD can reduce the time spent waiting for I/O completion, and this shorter wait
time for paging operations, data set index retrieval, or data set buffer retrieval can
also reduce task life in the processor.

Additional real storage, if page-ins are frequently occurring (if there are more than 5
to 10 page-ins per second, CICS performance is affected), can reduce waits for the
paging subsystem.

MVS provides storage isolation for an MVS performance group, which allows you to
reserve a specific range of real storage for the CICS address space and to control
the page-rates for that address space based on the task control block (TCB) time
absorbed by the CICS address space during execution.

You can isolate CICS data on DASD drives, strings, and channels to minimize the
I/0 contention suffered by CICS from other DASD activity in the system. Few CICS
online systems generate enough I/O activity to affect the performance of CICS
seriously if DASD is isolated in this manner.

So far (except when describing storage isolation and DASD sharing), we have
concentrated on CICS systems that run a stand-alone single CICS address space.
The sizes of all MVS address spaces are defined by the common requirements of
the largest subsystem. If you want to combine the workload from two or more
processors onto an MVS image, you must be aware of the virtual storage
requirements of each of the subsystems that are to execute on the single-image
ESA processor. (For an overall description of ESA virtual storage, see
['MVS and CICS virtual storage,” on page 821.) Review the virtual storage effects of
combining the following kinds of workload on a single-image MVS system:

1. CICS and a large number (100 or more) of TSO users
2. CICS and a large IMS system
3. CICS and 5000 to 7500 VTAM LUs.

By its nature, CICS requires a large private region that may not be available when
the large system’s common requirements of these other subsystems are satisfied.
If, after tuning the operating system, VTAM, VSAM, and CICS, you find that your
address space requirements still exceed that available, you can split CICS using
one of three options:

© Copyright IBM Corp. 1983, 2011 231

1. Multiregion option (MRO)
2. Intersystem communication (ISC)
3. Multiple independent address spaces.

Adding large new applications or making major increases in the size of your VTAM
network places large demands on virtual storage, and you must analyze them
before implementing them in a production system. Careful analysis and system
specification can avoid performance problems arising from the addition of new
applications in a virtual-storage-constrained environment. If you have not made the
necessary preparations, you usually become aware of problems associated with
severe stress only after you have attempted to implement the large application or
major change in your production system. Some of these symptoms are:

* Poor response times

» Short-on-storage

* Program compression

* Heavy paging activity

* Many well-tested applications suddenly abending with new symptoms
* S80A and S40D abends

» S822 abends

« Dramatic increase in I/O activity on DFHRPL program libraries.

The rest of this chapter covers the following techniques that you can use to improve
the performance of CICS under MVS:

+ [‘Reducing MVS common system area requirements’]
+ [“Splitting online systems to improve availability’]

+ [‘Making CICS nonswappable” on page 233

+ [“Increasing the CICS region size” on page 234|

+ [‘Using job initiators” on page 235

« [‘Tuning the region exit interval (ICV)” on page 236

+ [‘Using LLA (MVS library lookaside)” on page 238

« [‘DASD tuning” on page 240

Reducing MVS common system area requirements

This can be the most productive area for tuning. CICS installations that have not
previously tuned their ESA system may be able to recover 1.5 to 2.0 megabytes of
virtual storage. This topic is outside the scope of this book, but you should
investigate it fully before tuning CICS. A manual that gives information about this is
the [z/0S MVS Initialization and Tuning Reference| manual.

Splitting online systems to improve availability

Splitting the CICS system into two or more separate address spaces may lead to
improved availability. If CICS failures are being caused by application program
errors, for example, separating out the failing application can improve overall
availability. This can also give virtual storage gains and, in addition, can allow you
to use multiprocessors and MVS images more efficiently. See
Isystems: virtual storage” on page 353|for more information. A fuller account can be
found in the System/390 MVS Sysplex Application Migration Guide (GC28-1211).

232 CICS TS for z/0S: CICS Performance Guide

The availability of the overall system may be improved by splitting the system
because the effects of a failure can be limited or the time to recover from the failure
can be reduced.

The main ways of splitting a system for availability are to have:

» Terminal owning regions. With one or more terminal owning regions (TORs)
using transaction routing, availability can be improved because a TOR is less
likely to fail because it contains no application code. The time taken to restart the
failed part of the system is reduced because the terminal sessions are
maintained at failure if the TOR continues to operate.

* Multiple application owning regions. Using multiple application owning regions
(AORs), you can separate unstable or new applications from the rest of the
system. If these applications cause a failure of that AOR, all other AORs are still
available. If the region susceptible to failure contains no terminals or files and
databases, it also tends to restart quickly.

Applications under test in AORs can use function shipping to access ‘live’ data,
which adds to the realism of the test environment.

* File owning regions. File requests from many CICS regions can be
function-shipped to file owning regions (FORs). The FORs contain no application
code and so are unlikely to fail, so that access to files can be maintained even if
other regions fail. Removing the files and databases from these other regions
speeds up their recovery by removing file allocation and opening time.

Having only one FOR in a system, or logical subset of a system, can reduce the
operational difficulties of restarting a system. It is possible to split the regions in
different ways to those described so far, by having many regions all of which own
some terminals, some applications, and some files and databases. This type of
splitting is very complex to maintain and operate, and also needs careful monitoring
to ensure that the performance of the overall system is optimal. For these reasons,
a structured approach with each of the regions having a clearly defined set of one
type of resource is recommended.

Limitations
Splitting a CICS system requires increased real storage, increased processor
cycles, and extensive planning. These overheads are described in more detail in
[‘Splitting online systems: virtual storage” on page 353
Recommendations

If availability of your system is an important requirement, both splitting systems and
the use of XRF should be considered. The use of XRF can complement the splitting
of systems by automating the recovery of the components.

When splitting your system, you should try to separate the sources of failure so that
as much of the rest of the system as possible is protected against their failure, and
remains available for use. Critical components should be backed up, or configured
so that service can be restored with minimum delay. Since the advantages of
splitting regions for availability can be compromised if the queueing of requests for
remote regions is not controlled, you should also review |“Managing queues f0|1
|intersystems sessions” on page 375.|

Making CICS nonswappable

You can take a variety of actions to cause the operating system to give CICS
preferential treatment in allocation of processor resources.

Chapter 15. MVS and DASD: improving performance 233

Making CICS nonswappable prevents the address space from being swapped out in
MVS, and reduces the paging overhead. Consider leaving only very lightly used test
systems swappable.

How implemented

You should consider making your CICS region nonswappable by using the
PPTNSWP option in the MVS Program Properties Table (PPT).

Limitations

Using the PPT will make all CICS systems (including test systems) nonswappable.
As an alternative, use the IPS. For more information about defining entries in the
PPT see the |z/0S: MVS Programming: Callable Services for High-Level Languages
manual.

How monitored

The DISPLAY ACTIVE (DA) command on SDSF gives you an indication of the
number of real pages used and the paging rate. Use RMF, the RMFMON command
on TSO to provide additional information. For more information about RMF see
{‘Resource measurement facility (RMF)” on page 24 or the z/OS Resource
Measurement Facility User’s Guide.

Increasing the CICS region size

If all other factors in a CICS system are kept constant, increasing the region size
available to CICS allows an increase in the dynamic storage areas.

Changes to MVS and other subsystems over time generally reduce the amount of
storage required below the 16MB line. Thus the CICS region size may be able to
be increased when a new release of MVS or non-CICS subsystem is installed.

To get any further increase, operating-system functions and storage areas (such as
the local shared queue area, LSQA), or other programs must be reduced. The
LSQA is used by VTAM and other programs, and any increase in the CICS region
size decreases the area available for the LSQA, SWA, and subpools 229 and 230.
A shortage in these subpools can cause S80A, S40D, and S822 abends.

If you specify a larger region, the value of the relevant dsasize system initialization
parameter must be increased or the extra space is not used.

How implemented

The region size is defined in the startup job stream for CICS. Other definitions are
made to the operating system or through operating-system console commands.

To determine the maximum region size, determine the size of your private area from
RMF Il or one of the storage monitors available.

To determine the maximum region size you should allocate, use the following
formula:

Max region possible = private area size — system region size — (LSQA + SWA +
subpools 229 and 230)

234 CICS TS for z/0S: CICS Performance Guide

The remaining storage is available for the CICS region; for safety, use 80% or 90%
of this number. If the system is static or does not change much, use 90% of this
number for the REGION= parameter; if the system is dynamic, or changes
frequently, 80% would be more desirable.

Note: You must maintain a minimum of 200KB of free storage between the top of
the region and the bottom of the ESA high private area (the LSQA, the SWA,
and subpools 229 and 230).

How monitored

Use RMF, the RMFMON command on TSO for additional information. For more
information about RMF see |“Resource measurement facility (RMF)” on page 24| or
the MVS RMF User’s Guide.

Using job initiators

Effects

The management of the MVS high private area can sometimes result in
fragmentation and stranded subpools caused by large imbedded free areas known
as “holes”.

Some fragmentation can also occur in a region when a job initiator starts multiple
jobs without being stopped and then started again. If you define the region as
having the maximum allowable storage size, it is possible to start and stop the job
the first time the initiator is used, but to have an S822 abend (insufficient virtual
storage) the second time the job is started. This is because of the fragmentation
that occurs.

In this situation, either the region has to be decreased, or the job initiator has to be
stopped and restarted.

Two methods of starting the CICS job are available, to maximize the virtual storage
available to the region. One is to start and stop the initiator with each initialization of
CICS, executing CICS in a newly started initiator; and the other is to use the MVS
START command.

If CICS is executed as an MVS-started task (using the MVS START command)
instead of submitting it as a batch job, this not only ensures that a clean address
space is used (reducing the possibility of an S822 abend), but also saves a
significant amount of LSQA storage.

Some installations have had S822 abends after doing I/O generations or after
adding DD statements to large applications. An S822 abend occurs when you
request a REGION=nnnnK size that is larger than the amount available in the
address space.

The maximum region size that is available is difficult to define, and is usually
determined by trial and error. One of the reasons is that the size depends on the
system generation and on DD statements.

At least two techniques can be used to reduce storage fragmentation:

1. Dynamic allocation. You might consider writing a “front-end” program that
dynamically allocates the cataloged data sets for the step and then transfers
control (XCTL) to CICS. The effect of this is that only one eligible device list
(EDL) is used at a time.

Chapter 15. MVS and DASD: improving performance 235

Limitations

2. UNITNAME. You might consider creating a new UNITNAME (via EDT-GEN or
IOGEN). This UNITNAME could be a subset of devices known to contain the
cataloged data set. By using the “unit override” feature of JCL, it could cause
the EDL to be limited to the devices specified in the UNITNAME.

Available virtual storage is increased by starting new initiators to run CICS, or by
using MVS START. Startup time may be minimally increased.

How implemented

CICS startup and use of initiators are defined in an installation’s startup procedures.

How monitored

Part of the job termination message IEF374l 'VIRT=nnnnnK' shows you the virtual
storage below the 16MB line, and another part 'EXT=nnnnnnnK' shows the virtual
storage above the 16MB line.

Tuning the region exit interval (ICV)

Main effect

When CICS cannot dispatch a task, either because there are no tasks in the
system at that time, or because all tasks are waiting for data set or terminal 1/0 to
finish, CICS issues an operating-system WAIT. The ICV system initialization
parameter (see also [‘Adjusting the terminal scan delay (ICVTSD)” on page 253)
controls the length of this wait (but bear in mind that any interrupt, for example,
data set I/0 or terminal I/O, before any of these expires, causes CICS to be
dispatched).

The ICV system initialization parameter specifies the maximum time in milliseconds
that CICS releases control to the operating system when there are no transactions
ready to resume processing. CICS issues a region wait in this case for the time
specified in the ICV system initialization parameter. If activity in the system causes
CICS to be dispatched sooner, this parameter has no effect.

In general, ICV can be used in low-volume systems to keep part of the CICS
management code paged in. Expiration of this interval results in a full terminal
control table (TCT) scan in non-VTAM environments, and controls the dispatching of
terminal control in VTAM systems with low activity. Redispatch of CICS by MVS
after the wait may be delayed because of activity in the supervisor or in
higher-priority regions, for example, VTAM. The ICV delay can affect the shutdown
time if no other activity is taking place.

The value of ICV acts as a backstop for MROBTCH (see [‘Batching requests|
(MROBTCH)” on page 378).

The region exit interval determines the maximum period between terminal control
full scans. However, the interval between full scans in very active systems may be
less than this, being controlled by the normally shorter terminal scan delay interval
(see |“Adjusting the terminal scan delay (ICVTSD)” on page 253[). In such systems,
ICV becomes largely irrelevant unless ICVTSD has been set to zero.

236 CICS TS for z/0S: CICS Performance Guide

Secondary effects

Where useful

Limitations

Whenever control returns to the task dispatcher from terminal control after a full
scan, ICV is added to the current time of day to give the provisional due time for
the next full scan. In idle systems, CICS then goes into an operating-system wait
state, setting the timer to expire at this time. If there are application tasks to
dispatch, however, CICS passes control to these and, if the due time arrives before
CICS has issued an operating-system WAIT, the scan is done as soon as the task
dispatcher next regains control.

In active systems, after the due time has been calculated by adding ICV, the scan
may be performed at an earlier time by application activity (see [‘Adjusting the,

terminal scan delay (ICVTSD)” on page 253).

Operating-system waits are not always for the duration of one ICV. They last only
until some event ends. One possible event is the expiry of a time interval, but often
CICS regains control because of the completion of an 1/0 operation. Before issuing
the operating-system WAIT macro, CICS sets an operating-system timer, specifying
the interval as the time remaining until the next time-dependent activity becomes
due for processing. This is usually the next terminal control scan, controlled by
either ICV or ICVTSD, but it can be the earliest ICE expiry time, or even less.

In high-activity systems, where CICS is contending for processor time with very
active higher-priority subsystems (VTAM, TSO, other CICS systems, or DB/DC),
control may be seized from CICS so often that CICS always has work to do and
never issues an operating-system WAIT.

The region exit interval is useful in environments where batch or other CICS
systems are running concurrently.

Too low a value can impair concurrent batch performance by causing frequent and
unnecessary dispatches of CICS by MVS. Too high a value can lead to an
appreciable delay before the system handles time-dependent events (such as
abends for terminal read or deadlock timeouts) after the due time.

A low ICV value does not prevent all CICS modules from being paged out. When
the ICV time interval expires, the operating system dispatches CICS task control
which, in turn, dispatches terminal control. CICS references only task control,
terminal control, TCT, and the CSA. No other modules in CICS are referenced. If
there is storage constraint they do not stay in real storage.

After the operating-system WAIT, redispatch of CICS may be delayed because of
activity in the supervisor or in higher-priority regions such as VTAM, and so on.

The ICV delay can affect the shutdown time if no other activity is taking place.

Recommendations

The time interval can be any decimal value in the range from 100 through 3600000
milliseconds.

In normal systems, set ICV to 1000-10000 milliseconds, or more.

Chapter 15. MVS and DASD: improving performance 237

A low interval value can enable much of the CICS nucleus to be retained, and not
be paged out at times of low terminal activity. This reduces the amount of paging
necessary for CICS to process terminal transactions (thus representing a potential
reduction in response time), sometimes at the expense of concurrent batch region
throughput. Large networks with high terminal activity tend to drive CICS without a
need for this value, except to handle the occasional, but unpredictable, period of
inactivity. These networks can usually function with a large interval (10000 to 30000
milliseconds). After a task has been initiated, the system recognizes its requests for
terminal services and the completion of the services, and overrides this maximum
delay interval.

Small systems or those with low terminal activity are subject to paging introduced
by other jobs running in competition with CICS. If you specify a low interval value,
key portions of the CICS nucleus are referenced more frequently, thus reducing the
probability of these pages being paged-out. However, the execution of the logic,
such as terminal polling activity, without performing productive work might be
considered wasteful.

You must weigh the need to increase the probability of residency by frequent but
unproductive referencing, against the extra overhead and longer response times
incurred by allowing the paging to occur. If you increase the interval size, more
productive work is performed at the expense of performance if paging occurs during
the periods of CICS activity.

How implemented
ICV is specified in the SIT or at startup, and can be changed using either the CEMT
or EXEC CICS SET SYSTEM (time) command. It is defined in units of milliseconds,
rounded down to the nearest multiple of ten. The default is 1000 (that is, one
second; usually too low).

How monitored

The region exit interval can be monitored by the frequency of CICS
operating-system WAITs that are counted in [‘Dispatcher domain statistics” on page|

Using LLA (MVS library lookaside)

Modules loaded by CICS from the DFHRPL libraries may be managed by the MVS
LLA (library lookaside) facility. LLA is designed to minimize disk 1/0O by keeping load
modules in a VLF (virtual lookaside facility) dataspace and keeping a version of the
library directory in its own address space.

LLA manages modules (system or application) whose library names you have put in
the appropriate CSVLLA member in SYS1.PARMLIB.

There are two optional parameters in this member that affect the management of
specified libraries:

FREEZE
Tells the system always to use the copy of the directory that is maintained
in the LLA address space.

NOFREEZE
Tells the system always to search the directory that resides in DASD
storage.

238 CICS TS for z/0S: CICS Performance Guide

However, FREEZE and NOFREEZE are only relevant when LLACOPY is not used.
When CICS issues a LOAD and specifies the directory entry (DE), it bypasses the
LLA directory processing, but determines from LLA whether the program is already
in VLF or must be fetched from DASD. For more information about the FREEZE
and NOFREEZE options, see the |zZ0S MVS Initialization and Tuning Guide|

The use of LLA to manage a very busy DFHRPL library can show two distinct
benefits:

1. Improved transaction response time

2. Better DASD utilization.

It is possible, as throughput increases, that DASD utilization actually decreases.
This is due to LLA’s observation of the load activity and its decisions about which
modules to stage (keep) in the VLF dataspace.

LLA does not automatically stage all members that are fetched. LLA attempts to
select those modules whose staging gives the best reductions in response time,
contentions, storage cost, and an optional user-defined quantity.

In addition to any USER-defined CICS DFHRPL libraries, LLA also manages the
system LNKLST. It is likely that staging some modules from the LNKLST could have
more effect than staging modules from the CICS libraries. LLA makes decisions on
what is staged to VLF only after observing the fetch activity in the system for a
certain period. For this reason it is possible to see I/O against a program library
even when it is managed by LLA.

Another contributing factor for continued 1/O is the system becoming “MAXVIRT
constrained”, that is, the sum of bytes from the working set of modules is greater
than the MAXVIRT parameter for the LLA class of VLF objects. You can increase
this value by changing it in the COFVLF member in SYS1.PARMLIB. A value too
small can cause excessive movement of that VLF object class; a value too large
can cause excessive paging; both may increase the DASD activity significantly.

See the [z70S MVS Initialization and Tuning Guidg manual for information on LLA
and VLF parameters.

Effects of LLACOPY

CICS can use one of two methods for locating modules in the DFHRPL
concatenation. Either a build link-list (BLDL) macro or a LLACOPY macro is issued
to return the directory information to pass to the load request. Which macro is
issued is dependant upon the LLACOPY system initialization parameter and the
reason for the locate of the module.

The LLACOPY macro is used to update the LLA-managed directory entry for a
module or a list of modules. If a module which is LLA managed has an LLACOPY
issued against it, it results in a BLDL with physical I/O against the DCB specified. If
the directory information does not match that which is stored within LLA, the LLA
tables are then updated, keeping both subsystems synchronized. While this activity
takes place an ENQ for the resource SYSZLLA1.update is held. This is then
unavailable to any other LLACOPY request on the same MVS system and therefore
another LLACOPY request is delayed until the ENQ is released.

The BLDL macro also returns the directory information. When a BLDL is issued

against an LLA managed module, the information returned will be from the LLA
copy of the directory, if one exists. It will not necessarily result in physical 1/O to the

Chapter 15. MVS and DASD: improving performance 239

data set and may therefore be out of step with the actual data set. BLDL does not
require the SYSZLLA1.update ENQ and is therefore less prone to being delayed by
BLDLs on the same MVS system. Note that it is not advisable to use a
NOCONNECT option when invoking the BLDL macro because the DFHRPL
concatenated data set may contain partitioned data set extended (PDSE) data sets.
PDSE can contain more function than PDS, but CICS may not recognise some of
this function. PDSE also use more virtual storage .

The SIT Parameter LLACOPY

If you code LLACOPY=YES, the default, CICS issues a LLACOPY macro each time
a module is located from the RPL data set. This is done either on the first
ACQUIRE or on any subsequent NEWCOPY or PHASEIN requests. This ensures
that CICS always obtains the latest copy of any LLA-managed modules. There is a
small chance of delay because of a failure to obtain an ENQ while another
LLACOPY completes and there is some extra pathlength involved in maintaining the
LLA tables.

If you code LLACOPY=NO, CICS never issues an LLACOPY macro. Instead, each
time the RPL data set is searched for a module, a BLDL is issued.

If you code LLACOPY=NEWCOPY, CICS issues the LLACOPY macro when loading
a module as a result of a NEWCOPY or PHASEIN request. A BLDL macro is issued
at all other times. This could mean an out of date version of a module is loaded
upon its first use, but the latest version would be used after a NEWCOPY or
PHASEIN.

For more information about the LLACOPY system initialization parameter, see the
|CICS System Definition Guidel

DASD tuning

The main solutions to DASD problems are to:
* Reduce the number of 1/0 operations

* Tune the remaining 1/O operations

» Balance the 1/O operations load.

Reducing the number of I/O operations

240 cICS TS for z/0OS:

The principal ways of reducing the number of 1/O operations are to:
» Allocate VSAM Hiperspace buffers

» Allocate additional address space buffers

* Use data tables when appropriate

» Use or increase the use of main temporary storage

» Eliminate or minimize program compression

* Review and improve the design of applications run on CICS

» Make use of a DASD controller cache, but only if data set placement tuning has
been done

* Minimize CI/CA splits by:

— Allocating ample free space (free space can be altered by key range during
load)

— Timely reorganizations of disk storage.

CICS Performance Guide

Tuning the I/O operations
This can reduce service time. The principal ways of tuning the 1/0 operations are to:

Specify the correct Cl size. This has an effect on:
The space used on the volume

Transfer time

Storage requirements for buffers

The type of processing (direct or sequential).
Specify the location of the VTOC correctly.

Take care over data set placement within the volume.

Use an appropriately fast device type and, if necessary, use a cache memory
(but only if data set placement tuning has been done and if there are sufficient
channels to handle the device speed).

Balancing I/O operations
This can reduce queue time. The principal ways of balancing 1/O operations are to:

Spread a high-use data set across multiple volumes.

Minimize the use of shared DASD volumes between multiple processors.
Place batch files and online files on separate volumes, especially:

Spool files

Sort files

Assembler or compiler work files

Page data sets.

Place index and data on separate volumes (for VSAM KSDS files).

Place concurrently used files on separate volumes. For example, a CICS journal
should be the only data set in use on its volume.

Take the following figures as guidelines for best DASD response times for online
systems:

Channel busy: less than 30% (with CHP ids this can be higher)
Device busy: less than 35% for randomly accessed files
Average response time: less than 20 milliseconds.

Aim for multiple paths to disk controllers because this allows dynamic path selection
to work.

Chapter 15. MVS and DASD: improving performance 241

242 CICS TS for z/0S: CICS Performance Guide

Chapter 16. Networking and VTAM: improving performance

This chapter includes the following topics:
« [‘Setting the size of the terminal input/output area (TYPETERM IOAREALEN or]

TCT TIOAL)’|

[‘Setting the size of receive-any input areas (RAMAX)” on page 245|
[‘Setting the size of the receive-any pool (RAPOOL)” on page 24§
[‘Using the MVS high performance option (HPO) with VTAM” on page 248

« [‘Adjusting the number of transmissions in SNA transaction flows (MSGINTEG |
and ONEWTE)” on page 249

+ [‘Using SNA chaining to segment large messages (TYPETERM RECEIVESIZE |
BUILDCHAIN, and SENDSIZE)” on page 250|

* [‘Limiting the number of concurrent logon/logoff requests (OPNDLIM)” on pag
252

* |‘Adjusting the terminal scan delay (ICVTSD)” on page 253|
» |“Compressing output terminal data streams” on page 255|
* [“Tuning automatic installation of terminals” on page 256|

Setting the size of the terminal input/output area (TYPETERM
IOAREALEN or TCT TIOAL)

Effects

Limitations

If you are using VTAM, the CEDA DEFINE TYPETERM IOAREALEN command
determines the initial size of the terminal input/output area (TIOA) to be passed
onto a transaction for each terminal. The syntax for IOAREALEN is
({Olvalue1},{Olvalue2}). This operand is used only for the first input message for all
transactions.

One value defining the minimum size is used for non-SNA devices, while two values
specifying both the minimum and maximum size are used for SNA devices.

This book does not discuss the performance aspects of the CICS Front End
Programming Interface. See fthe CICS Front End Programming Interface User's

for more information.

When value1i,0 is specified for IOAREALEN, value1 is the minimum size of the
terminal input/output area that is passed to an application program when a
RECEIVE command is issued. If the size of the input message exceeds value1l, the
area passed to the application program is the size of the input message.

When value1, value2 is specified, value1 is the minimum size of the terminal
input/output area that is passed to an application program when a RECEIVE
command is issued. Whenever the size of the input message exceeds value1, CICS
will use value2. If the input message size exceeds value2, the node abnormal
condition program sends an exception response to the terminal.

If you specify ATI(YES), you must specify an IOAREALEN of at least one byte.

Real storage can be wasted if the IDAREALEN (value1) or TIOAL value is too large
for most terminal inputs in the network. If IOAREALEN (value1) or TIOAL is smaller

© Copyright IBM Corp. 1983, 2011 243

than most initial terminal inputs, excessive GETMAIN requests can occur, resulting
in additional processor requirements, unless IOAREALEN(value1) or TIOAL is zero.

Recommendations

IOAREALEN(value1) or TIOAL should be set to a value that is slightly larger than
the average input message length for the terminal. The maximum value that may be
specified for IOAREALEN/TIOAL is 32767 bytes.

If a value of nonzero is required, the best size to specify is the most commonly
encountered input message size. A multiple of 64 bytes minus 21 allows for SAA
requirements and ensures good use of operating system pages.

For VTAM, you can specify two values if inbound chaining is used. The first value
should be the length of the normal chain size for the terminal, and the second value
should be the maximum size of the chain. The length of the TIOA presented to the
task depends on the message length and the size specified for the TIOA. (See the

example in [Figure 54})

Where x is any number of bytes, the following applies.
Without chain assembly:

If the TIOA size is specified as 20x

and the message length is 15x
then the TIOA acquired is 20x
If the TIOA size is specified as 20x
and the message length is 25x
then the TIOA acquired is 25x

With chain assembly:

If Valuel size is 20x
and Value2 size is 25x, then
if the length of a message is 15x
the TIOA acquired is 20x
and if the message length is 22X
the TIOA acquired is 25x

Figure 54. Message length and terminal input/output area length

Avoid specifying too large a valuei, for example, by matching it to the size of the
terminal display screen. This area is used only as input. If READ with SET is
specified, the same pointer is used by applications for an output area.

If too small a value is specified for value1, extra processing time is required for
chain assembly, or data is lost if inbound chaining is not used.

In general, a value of zero is best because it causes the optimum use of storage
and eliminates the second GETMAIN request. If automatic transaction initiation
(ATI) is used for that terminal, a minimum size of one byte is required.

The second value for SNA devices is used to prevent terminal streaming, and so
should be slightly larger than the largest possible terminal input in the network. If a
message larger than this second value is encountered, a negative response is
returned to the terminal, and the terminal message is discarded.

244 CICS TS for z/0S: CICS Performance Guide

How implemented

For VTAM, the TIOA value is specified in the CEDA DEFINE TYPETERM
IOAREALEN attribute.

How monitored

RMF and NetView Performance Monitor (NPM) can be used to show storage usage
and message size characteristics in the network.

Setting the size of receive-any input areas (RAMAX)

Effects

Where useful

Limitations

The system initialization parameter, RAMAX, specifies the size in bytes of the I/O
area that is to be allocated for each VTAM receive-any operation. These storage
areas are called receive-any input areas (RAIAs), and are used to receive the first
terminal input for a transaction from VTAM. All input from VTAM comes in
request/response units (RUSs).

Storage for the RAIAs, which is above the 16MB line, is allocated by the CICS
terminal control program during CICS initialization, and remains allocated for the
entire execution of the CICS job step. The size of this storage is the product of the
RAPOOL and RAMAX system initialization parameters.

VTAM attempts to put any incoming RU into the initial receive-any input area, which
has the size of RAMAX. If this is not large enough, VTAM indicates that and also
states how many extra bytes are waiting that cannot be accommodated.

RAMAX is the largest size of any RU that CICS can take directly in the receive-any
command, and is a limit against which CICS compares VTAM’s indication of the
overall size of the RU. If there is more, VTAM saves it, and CICS gets the rest in a
second request.

With a small RAMAX, you reduce the virtual storage taken up in RAIAs but risk
more processor usage in VTAM retries to get any data that could not fit into the
RAIA.

For many purposes, the default RAMAX value of 256 bytes is adequate. If you
know that many incoming RUs are larger than this, you can always increase
RAMAX to suit your system.

For individual terminals, there are separate parameters that determine how large an
RU is going to be from that device. It makes sense for RAMAX to be at least as
large as the largest CEDA SENDSIZE for any frequently-used terminals.

You can use the RAMAX system initialization parameter in any networks that use
the VTAM access method for terminals.

Real storage can be wasted with a high RAMAX value, and additional processor
time can be required with a low RAMAX value. If the RAMAX value is set too low,
extra processor time is needed to acquire additional buffers to receive the
remaining data. Because most inputs are 256 bytes, this should normally be
specified.

Chapter 16. Networking and VTAM: improving performance 245

Do not specify a RAMAX value that is less than the RUSIZE (from the CINIT) for a
pipeline terminal because pipelines cannot handle overlength data.

Recommendations

Code RAMAX with the size in bytes of the I/O area allocated for each receive-any
request issued by CICS. The maximum value is 32767.

Set RAMAX to be slightly larger than your CICS system input messages. If you
know the message length distribution for your system, set the value to
accommodate the majority of your input messages.

In any case, the size required for RAMAX need only take into account the first (or
only) RU of a message. Thus, messages sent using SNA chaining do not require
RAMAX based on their overall chain length, but only on the size of the constituent
RUs.

Receive-any input areas are taken from a fixed length subpool of storage. A size of
2048 may appear to be adequate for two such areas to fit on one 4KB page, but
only 4048 bytes are available in each page, so only one area fits on one page. A
size of 2024 should be defined to ensure that two areas, including page headers, fit
on one page.

How implemented

RAMAX is a system initialization parameter.

How monitored

The size of RUs or chains in a network can be identified with a VTAM line or buffer
trace. The maximum size RUs are defined in the CEDA SENDSIZE attribute.

Setting the size of the receive-any pool (RAPOOL)

Effects

The RAPOOL system initialization parameter specifies the number of concurrent
receive-any requests that CICS is to process from VTAM. RAPOOL determines how
many receive-any buffers there are at any time and, therefore, if VTAM has a lot of
input simultaneously, it enables VTAM to put all the messages directly into CICS
buffers rather than possibly having to store them itself elsewhere. The first operand
(value1) is for non-HPO systems, the second operand (value2) is for HPO systems.

The HPO value for the non-HPO operand is derived according to the formula shown
in the CICS System Definition Guide, The second operand (value2) for HPO
systems is used with minimal adjustment by the formula.

Initially, task input from a terminal or session is received by the VTAM access
method and is passed to CICS if CICS has a receive-any request outstanding.

For each receive-any request, a VTAM request parameter list (RPL), a receive-any
control element (RACE), and a receive-any input area (RAIA)—the value specified
by RAMAX (see |“Setting the size of receive-any input areas (RAMAX)” on page|
@ are set aside. The total area set aside for VTAM receive-any operations is:

(maximum RAIA size + RACE size + RPL size) * RAPOOL

If HPO=YES, both RACE and RPL are above the 16MB line.

246 CICS TS for z/0S: CICS Performance Guide

Where useful

Limitations

See page for RAIA considerations.

In general, input messages up to the value specified in RAPOOL are all processed
in one dispatch of the terminal control task. Because the processing of a
receive-any request is a short operation, at times more messages than the
RAPOOL value may be processed in one dispatch of terminal control. This happens
when a receive-any request completes before the terminal control program has
finished processing and there are additional messages from VTAM.

VTAM receive-any processing is for the first terminal message in a transaction, so
RAPOOL has no effect on further inputs for conversational tasks. Those additional
inputs are processed with VTAM receive-specific requests.

The pool is used only for the first input to start a task; it is not used for output or
conversational input. VTAM posts the event control block (ECB) associated with the
receive any input area. CICS then moves the data to the terminal 1/0O area (TIOA)
ready for task processing. The RAIA is then available for reuse.

Use the RAPOOL operand in networks that use the VTAM access method for
terminals.

If the RAPOOL value is set too low, this can result in terminal messages not being
processed in the earliest dispatch of the terminal control program, thereby inducing
transaction delays during high-activity periods. For example, if you use the default
and five terminal entries want to start up tasks, three tasks may be delayed for at
least the time required to complete the VTAM receive-any request and copy the
data and RPL. In general, no more than 5 to 10% of all receive-any processing
should be at the RAPOOL ceiling, with none being at the RAPOOL ceiling if there is
sufficient storage.

If the RAPOOL value is set too high, this can use excessive virtual storage, but
does not affect real storage because the storage is not page-fixed and is therefore
paged out.

Recommendations

Whether RAPOOL is significant or not depends on the environment of the CICS
system: whether, for example, HPO is being used.

In some cases, it may sometimes be more economical for VTAM to store the
occasional peak of messages in its own areas rather than for CICS itself to have a
large number of RAIAs, many of which are unused most of the time.

Furthermore, there are situations where CICS reissues a receive-any as soon as it
finds one satisfied. It thereby uses the same element over and over again in order
to bring in any extra messages that are in VTAM.

CICS maintains a VTAM RECEIVE ANY for n of the RPLs, where n is either the

RAPOOL value, or the|MXT|vaIue minus the number of currently active tasks,

whichever is the smaller. See the [the CICS System Definition Guide| for more
information about these SIT parameters.

Chapter 16. Networking and VTAM: improving performance 247

A general recommendation is to code RAPOOL with the number of fixed request
parameter lists (RPLs) that you require. When it is not at MXT, CICS maintains a
receive-any request for each of these RPLs. The number of RPLs that you require
depends on the expected activity of the system, the average transaction lifetime,
and the MXT specified.

The RAPOOL value you set depends on the number of sessions, the number of
terminals, and the ICVTSD value (see page in the system initialization table
(SIT). Initially, for non-HPO systems, you should set RAPOOL to 1.5 times your
peak local ? transaction rate per second plus the autoinstall rate. This can then be
adjusted by analyzing the CICS VTAM statistics and by resetting the value to the
maximum RPLs reached.

For HPO systems, a small value (<= 5) is usually sufficient if specified through the
value2 in the RAPOOL system initialization parameter. Thus, RAPOOL=20, for
example, is specified either RAPOOL=(20) or RAPOOL=(20,5) to achieve the same
effect.

How implemented
RAPOOL is a system initialization parameter.

How monitored

The CICS VTAM statistics contain values for the maximum number of RPLs posted
on any one dispatch of the terminal control program, and the number of times the
RPL maximum was reached. This maximum value may be greater than the
RAPOOL value if the terminal control program is able to reuse an RPL during one
dispatch. See [Interpreting VTAM statistics” on page 45| for more information.

Using the MVS high performance option (HPO) with VTAM

The MVS high performance option (HPO) can be used for processing VTAM
requests. The purpose of HPO is to reduce the transaction pathlength through
VTAM.

Effects

HPO bypasses some of the validating functions performed by MVS on 1/O
operations, and implements service request block (SRB) scheduling. This shortens
the instruction pathlength and allows some concurrent processing on MVS images
for the VTAM operations because of the SRB scheduling. This makes it useful in a
multi processor environment, but not in a single processor environment.

Limitations

HPO requires CICS to be authorized, and some risks with MVS integrity are
involved because a user-written module could be made to replace one of the CICS
system initialization routines and run in authorized mode. This risk can be reduced
by RACF protecting the CICS SDFHAUTH data set.

Use of HPO saves processor time, and does not increase real or virtual storage
requirements or 1/O contention. The only expense of HPO is the potential security
exposure that arises because of a deficiency in validation.

2. The RAPOOL figure does not include MRO sessions, so you should set RAPOOL to a low value in application- or file-owning
regions (AORs or FORs).

248 CICS TS for z/0S: CICS Performance Guide

Recommendations

The general recommendation is that all production systems with vetted applications
can use HPO. It is totally application-transparent and introduces no function
restrictions while providing a reduced pathlength through VTAM. In the case of
VTAM, the reduced validation does not induce any integrity loss for the messages.

How implemented

The SVCs and use of HPO are specified in the system initialization table (SIT) and,
if the default SVC numbers are acceptable, no tailoring of the system is required.

How monitored

There is no direct measurement of HPO. One way to tell if it is working is to take
detailed measurements of processor usage with HPO turned on (SIT option) and
with it turned off. Depending on the workload, you may not see much difference.
Another way to check whether it is working is that you may see a small increase in
the SRB scheduling time with HPO turned on.

RMF can give general information on processor usage. An SVC trace can show
how HPO was used.

Note that you should be take care when using HPO in a system that is being used
for early testing of a new application or CICS code (a new release or PUT). Much
of the pathlength reduction is achieved by bypassing control block verification code
in VTAM. Untested code might possibly corrupt the control blocks that CICS passes
to VTAM, and unvalidated applications can lead to security exposure.

Adjusting the number of transmissions in SNA transaction flows
(MSGINTEG, and ONEWTE)

Effects

Within CICS, the MSGINTEG option can be used to control the communication
requests and responses that are exchanged between the terminals in a network
and the VTAM and NCP communications programs.

One of the options in Systems Network Architecture (SNA) is whether the
messages exchanged between CICS and a terminal are to be in definite or
exception response mode. Definite response mode requires both the terminal and
CICS to provide acknowledgment of receipt of messages from each other on a
one-to-one basis.

SNA also ensures message delivery through synchronous data link control (SDLC),
so definite response is not normally required. Specifying message integrity
(MSGINTEG) causes the sessions for which it is specified to operate in definite
response mode.

In other cases, the session between CICS and a terminal operates in exception
response mode, and this is the normal case.

In SNA, transactions are defined within brackets. A begin bracket (BB) command
defines the start of a transaction, and an end bracket (EB) command defines the
end of that transaction. Unless CICS knows ahead of time that a message is the
last of a transaction, it must send an EB separate from the last message if a

Chapter 16. Networking and VTAM: improving performance 249

transaction terminates. The EB is an SNA command, and can be sent with the
message, eliminating one required transmission to the terminal.

Specifying the ONEWTE option for a transaction implies that only one output
message is to be sent to the terminal by that transaction, and allows CICS to send
the EB along with that message. Only one output message is allowed if ONEWTE
is specified and, if a second message is sent, the transaction is abended.

The second way to allow CICS to send the EB with a terminal message is to code
the LAST option on the last terminal control or basic mapping support SEND
command in a program. Multiple SEND commands can be used, but the LAST
option must be coded for the final SEND in a program.

The third (and most common) way is to issue SEND without WAIT as the final
terminal communication. The message is then sent as part of task termination.

You have the following options:
* Not specifying MSGINTEG
» Specifying MSGINTEG (which simply asks for definite response to be forced)

Where useful
The above options can be used in all CICS systems that use VTAM.

Limitations

The MSGINTEG option causes additional transmissions to the terminal.
Transactions remain in CICS for a longer period, and tie up virtual storage and
access to resources (primarily enqueues). MSGINTEG is required if the transaction
must know that the message was delivered.

When MSGINTEG is specified, the TIOA remains in storage until the response is
received from the terminal. This option can increase the virtual storage
requirements for the CICS region because of the longer duration of the storage
needs.

How implemented
With resource definition online (RDO) using the CEDA transaction, protection can
be specified in the PROFILE definition by means of the MSGINTEG, and ONEWTE

options. The MSGINTEG option is used with SNA LUs only. See the CICS
[Resource Definition Guidd for more information about defining a PROFILE.

How monitored

You can monitor the use of the above options from a VTAM trace by examining the
exchanges between terminals and CICS and, in particular, by examining the
contents of the request/response header (RH).

Using SNA chaining to segment large messages (TYPETERM
RECEIVESIZE, BUILDCHAIN, and SENDSIZE)

Systems Network Architecture (SNA) allows terminal messages to be chained, and
lets large messages be split into smaller parts while still logically treating the
multiple message as a single message.

250 CICS TS for z/0S: CICS Performance Guide

Effects

Where useful

Limitations

Input chain size and characteristics are normally dictated by the hardware
requirements of the terminal in question, and so the CEDA BUILDCHAIN and
RECEIVESIZE attributes have default values which depend on device attributes.
The size of an output chain is specified by the CEDA SENDSIZE attribute.

Because the network control program (NCP) also segments messages into
256-byte blocks for normal LU Type 0, 1, 2, and 3 devices, a SENDSIZE value of
zero eliminates the overhead of output chaining. A value of 0 or 1536 is required for
local devices of this type.

If you specify the CEDA SENDSIZE attribute for intersystem communication (ISC)
sessions, this must match the CEDA RECEIVESIZE attribute in the other system.
The CEDA SENDSIZE attribute or TCT BUFFER operand controls the size of the
SNA element that is to be sent, and the CEDA RECEIVESIZEs need to match so
that there is a corresponding buffer of the same size able to receive the element.

If you specify BUILDCHAIN(YES), CICS assembles a complete chain of elements
before passing them to an application. If you do not specify BUILDCHAIN(YES),
each individual RU is passed to an individual receive-any in the application. With
SNA/3270 BMS does not work correctly if you do not specify BUILDCHAIN(YES).

If you are dealing with very large inbound elements that exceed a maximum of
32KB, you cannot use the BUILDCHAIN attribute or CHNASSY operand. You must
use multiple individual RUs, and this extends the transaction life in the system.

Chaining can be used in systems that use VTAM and SNA terminals of types that
tolerate chaining.

If you specify a low CEDA SENDSIZE value, this causes additional processing and
real and virtual storage to be used to break the single logical message into multiple
parts.

Chaining may be required for some terminal devices. Output chaining can cause
flickering on display screens, which can annoy users. Chaining also causes
additional 1/0 overhead between VTAM and the NCP by requiring additional VTAM
subtasks and STARTIO operations. This additional overhead is eliminated with
applicable ACF/VTAM releases by making use of the large message performance
enhancement option (LMPEO).

Recommendations

The CEDA RECEIVESIZE value for IBM 3274-connected display terminals should
be 1024; for IBM 3276-connected display terminals it should be 2048. These values
give the best line characteristics while keeping processor usage to a minimum.

How implemented

Chaining characteristics are specified in the CEDA DEFINE TYPETERM statement
with the SENDSIZE, BUILDCHAIN, and RECEIVESIZE attributes.

Chapter 16. Networking and VTAM: improving performance 251

How monitored

Use of chaining and chain size can be determined by examining a VTAM trace. You
can also use the CICS internal and auxiliary trace facilities, in which the VIO ZCP
trace shows the chain elements. Some of the network monitor tools such as
NetView Performance Monitor (NPM) give this data.

Limiting the nu

Effects

Where useful

mber of concurrent logon/logoff requests (OPNDLIM)

The OPNDLIM operand defines the number of concurrent VTAM logons and logoffs
that are to be processed by CICS. In systems running ACF/VTAM Release 3.2 and
later, this operand is not necessary and will be ignored. In all other instances this
system initialization parameter limits the number of concurrent logon OPNDST and
logoff CLSDST requests. The smaller this value, the smaller the amount of storage
that is required during the open and close process.

Each concurrent logon/logoff requires storage in the CICS dynamic storage areas
for the duration of that processing.

Particularly when logons are being done automatically with either the CICS
CONNECT=AUTO facility or the VTAM LOGAPPL facility, large numbers of logons
can occur at CICS startup or restart times. In systems running ACF/VTAM with a
release prior to 3.2 this can require significant amounts of storage, which can be
reduced with the OPNDLIM operand. In ACF/VTAM Release 3.2 and later systems,
this operand is not necessary and will be ignored.

If an automatic logon facility is required, the LOGAPPL facility offers two
advantages. It requires approximately 3500 bytes less storage in VTAM than the
CONNECT=AUTO facility, and it logs terminals back on to CICS each time the
device is activated to VTAM, rather than only at CICS initialization.

The OPNDLIM system initialization parameter can be used in CICS systems that
use VTAM as the terminal access method.

The OPNDLIM system initialization parameter can also be useful if there are times
when all the user community tends to log on or log off at the same time, for
example, during lunch breaks.

Limitations
If too low a value is specified for OPNDLIM, real and virtual storage requirements
are reduced within CICS and VTAM buffer requirements may be cut back, but
session initializations and terminations take longer.

Recommendations

252 CICS TS for z/0S:

Use the default value initially and make adjustments if statistics indicate that too
much storage is required in your environment or that the startup time (DEFINE
TYPETERM AUTOCONNECT attribute in CEDA) is excessive.

OPNDLIM should be set to a value not less than the number of LUs connected to
any single VTAM line.

CICS Performance Guide

How implemented

OPNDLIM is a system initialization parameter.

How monitored

Logon and logoff activities are not reported directly by CICS or any measurement
tools, but can be analyzed using the information given in a VTAM trace or VTAM
display command.

Adjusting the terminal scan delay (ICVTSD)

Effects

The terminal scan delay (ICVTSD) system initialization parameter determines the
frequency with which CICS attempts to process terminal output requests.

In general, this value defines the time that the terminal control program must wait to
process:

* Non-VTAM terminal I/O requests with WAIT specified
* Non-VTAM output deferred until task termination
» Automatic transaction initiation (ATI) requests

* VTAM terminal management, including output request handling, in busy CICS
systems with significant application task activity.

This last case arises from the way that CICS scans active tasks.

On CICS non-VTAM systems, the delay value specifies how long the terminal
control program must wait after an application terminal request, before it carries out
a TCT scan. The value thus controls batching and delay in the associated
processing of terminal control requests. In a low-activity system, it controls the
dispatching of the terminal control program.

The batching of requests reduces processor time at the expense of longer response
times. On CICS VTAM systems, it influences how quickly the terminal control
program completes VTAM request processing, especially when the MVS high
performance option (HPO) is being used.

VTAM

In VTAM networks, a low ICVTSD value does not cause full TCT scans because the
input from or output to VTAM terminals is processed from the activate queue chain,
and only those terminal entries are scanned.

With VTAM terminals, CICS uses bracket protocol to indicate that the terminal is
currently connected to a transaction. The bracket is started when the transaction is
initiated, and ended when the transaction is terminated. This means that there could
be two outputs to the terminal per transaction: one for the data sent and one when
the transaction terminates containing the end bracket. In fact, only one output is
sent (except for WRITE/SEND with WAIT and definite response). CICS holds the
output data until the next terminal control request or termination. In this way it saves
processor cycles and line utilization by sending the message and end bracket or
change direction (if the next request was a READ/RECEIVE) together in the same
output message (PIU). When the system gets very busy, terminal control is
dispatched less frequently and becomes more dependent upon the value specified
in ICVTSD. Because CICS may not send the end bracket to VTAM for an extended
period of time, the life of a transaction can be extended. This keeps storage

Chapter 16. Networking and VTAM: improving performance 253

Where useful

allocated for that task for longer periods and potentially increases the amount of
virtual storage required for the total CICS dynamic storage areas.

Setting ICVTSD to zero can overcome this effect.

Non-VTAM

ICVTSD is the major control on the frequency of full terminal control table (TCT)
scanning of non-VTAM terminals. In active systems, a full scan is done
approximately once every ICVTSD. The average extra delay before sending an
output message should be about half this period.

In non-VTAM networks, partial scans occur for other reasons, such as an input
arriving from a terminal, and any outputs for that line are processed at the same
time. For that reason, a value of between 0.5 and one second is normally a
reasonable setting for non-VTAM networks.

CICS scans application tasks first, unless there is an ICVTSD-driven scan. In a
highly utilized system, input and output messages may be unreasonably delayed if
too large a ICVTSD value is specified.

All networks

The ICVTSD parameter can be changed in the system initialization table (SIT) or
through JCL parameter overrides. If you are having virtual storage constraint
problems, it is highly recommended that you reduce the value specified in ICVTSD.
A value of zero causes the terminal control task to be dispatched most frequently. If
you also have a large number of non-VTAM terminals, this may increase the
amount of nonproductive processor cycles. A value of 100—300 milliseconds may
be more appropriate for that situation. In a pure VTAM environment, however, the
overhead is not significant, unless the average transaction has a very short
pathlength, and ICVTSD should be set to zero for a better response time and best
virtual storage usage.

The ICVTSD system initialization parameter can be used in all except very
low-activity CICS systems.

Limitations
In VTAM systems, a low value adds the overhead of scanning the activate queue
TCTTE chain, which is normally a minor consideration. A high value in high-volume
systems can increase task life and tie up resources owned by that task for a longer
period of time; this can be a significant consideration.
A low, nonzero value of ICVTSD can cause CICS to be dispatched more frequently,
which increases the overhead of performance monitoring.
Recommendations

Set ICVTSD to a value less than the region exit time interval (ICV), which is also in
the system initialization table. Use the value of zero in an environment that contains
only VTAM terminals and consoles, unless your workload consists of many short
transactions. ICVTSD=0 in a VTAM terminal-only environment is not recommended
for a CICS workload consisting of low terminal activity but with high TASK activity.
Periods of low terminal activity can lead to delays in CSTP being dispatched.
Setting ICVTSD=100-500 resolves this by causing CSTP to be dispatched regularly.
For non-VTAM systems, specify the value of zero only for small networks (1 through
30 terminals).

254 CICS TS for z/0S: CICS Performance Guide

For almost all systems that are not “pure” VTAM, the range should be somewhere
in the region of 100 milliseconds to 1000 milliseconds. ICVTSD can be varied
between, say, 300 and 1000 milliseconds without a very significant effect on the
response time, but increasing the value decreases the processor overhead. An
ICVTSD larger than 1000 milliseconds may not give any further improvement in
processor usage, at a cost of longer response times.

If ICVTSD is reduced, and, if there is ample processor resource, a small reduction
in response time can be achieved. If you go below 250 milliseconds, any
improvement in response time is likely to seem negligible to the end user and would
have an increased effect on processor usage.

The recommended absolute minimum level, for systems that are not “pure” VTAM,
is approximately 250 milliseconds or, in really high-performance, high-power
systems that are “pure” VTAM, 100 milliseconds.

How implemented

The ICVTSD system initialization parameter is defined in units of milliseconds. Use
the commands CEMT or EXEC CICS SET SYSTEM SCANDELAY (nnnn) to reset
the value of ICVTSD.

In reasonably active systems, a nonzero ICVTSD virtually replaces ICV (see page
because the time to the next TCT full scan (non-VTAM) or sending of output
requests (VTAM) is the principal influence on operating system wait duration.

How monitored

Use RMF to monitor task duration and processor requirements. The dispatcher
domain statistics reports the value of ICVTSD.

Compressing output terminal data streams

For output messages, CICS provides user exits with access to the entire output
data stream. User code can be written to remove redundant characters from the
data stream before the data stream is sent to the terminal. This technique can
produce a dramatic improvement in response times if the proportion of characters
not needed is large, because telecommunication links are usually the slowest paths
in the network.

Limitations
Some additional processor cycles are required to process the exit code, and the
coding of the exit logic also requires some effort. Use of a compression exit
reduces the storage requirements of VTAM and reduces line transmission time.
Recommendations

The simplest operation is to replace redundant characters, especially blanks, with a
repeat-to-address sequence in the data stream for 3270-type devices.

Note: The repeat-to-address sequence is not handled very quickly on some types
of 3270 cluster controller. In some cases, alternatives may give superior
performance. For example, instead of sending a repeat-to-address sequence
for a series of blanks, you should consider sending an ERASE and then
set-buffer-address sequences to skip over the blank areas. This is
satisfactory if nulls are acceptable in the buffer as an alternative to blanks.

Chapter 16. Networking and VTAM: improving performance 255

Another technique for reducing the amount of data transmitted is to turn off any
modified data tags on protected fields in an output data stream. This eliminates the
need for those characters to be transmitted back to the processor on the next input
message, but you should review application dependencies on those fields before
you try this.

There may be other opportunities for data compression in individual systems, but
you may need to investigate the design of those systems thoroughly before you can
implement them.

How implemented

For VTAM devices, the global user exit used to compress terminal messages is
XZCOUT1. For programming information, see |VTAM working-set module exits| in
the CICS Customization Guidg

How monitored
The contents of output terminal data streams can be examined in a VTAM trace.

Tuning automatic installation of terminals

During autoinstall processing, CICS obtains storage from the control subpool in the
extended CICS dynamic storage area (ECDSA), to handle each autoinstall request.
The amount of virtual storage obtained is mainly determined by the length of the
CINIT request unit, which varies for different LU types. For a typical autoinstall
request from an LU6.2 terminal, the amount of dynamic virtual storage obtained is
between 120 to 250 bytes.

Overall, the principal consumer of CICS resource in autoinstall processing is the
autoinstall task (CATA) itself. If, for some reason, the autoinstall process is not
proceeding at the rate expected during normal operations, there is a risk that the
system could be filled with CATA transaction storage.

Maximum concurrent autoinstalls (AIQMAX)

This system initialization parameter codes the maximum number of devices that can
be queued concurrently for autoinstall.

The AIQMAX value does not limit the total number of devices that can be
autoinstalled.

The restart delay parameter (AIRDELAY)

This system initialization parameter specifies whether you want autoinstalled
terminal definitions to be retained by CICS across a restart. The value of the restart
delay is specified as “hhmmss” and the default is “000700”, which is seven minutes.
This means that if a terminal does not log on to CICS within seven minutes after an
emergency restart, its terminal entry is scheduled for deletion.

Setting the restart delay to zero means that you do not want CICS to re-install the
autoinstalled terminal entries from the global catalog during emergency restart. In
this case, CICS does not write the terminal entries to the catalog while the terminal
is being autoinstalled. This can have positive performance effects on the following
processes:

Autoinstall By eliminating the 1/O activity, autoinstall has a shorter pathlength and
becomes more processor-intensive. So, in general, the time taken to autoinstall a

256 CICS TS for z/0S: CICS Performance Guide

terminal is reduced. However, the response time of other tasks may increase
slightly because CATA has a high priority and does not have to wait for as much 1/0
activity.

Emergency and warm restart When no autoinstalled terminal entries are
cataloged, CICS has to restore fewer entries from the GCD during emergency
restart. Thus, if you have a large number of autoinstalled terminals, the restart time
can be significantly improved when restart delay is set to zero.

Normal shutdown CICS deletes Al terminal entries from the GCD during normal
shutdown unless they were not cataloged (AIRDELAY=0) and the terminal has not
been deleted. If the restart delay is set to zero, CICS has not cataloged terminal
entries when they were autoinstalled, so they are not deleted. This can reduce
normal shutdown time.

XRF takeover The system initialization parameter, AIRDELAY, should not affect
XRF takeover. The tracking process still functions as before regardless of the value
of the restart delay. Thus, after a takeover, the alternate system still has all the
autoinstalled terminal entries. However, if a takeover occurs before the catchup
process completes, some of the autoinstalled terminals have to log on to CICS
again. The alternate CICS system has to rely on the catalog to complete the
catchup process and, if the restart delay is set to zero in the active system, the
alternate system is not able to restore the autoinstalled terminal entries that have
not been tracked. Those terminals have to log on to the new CICS system, rather
than being switched or rebound after takeover.

You have to weigh the risk of having some terminal users log on again because
tracking has not completed, against the benefits introduced by setting the restart
delay to zero. Because catchup takes only a few minutes, the chance of such a
takeover occurring is usually small.

The delete delay parameter (AILDELAY)

The delete delay system initialization parameter lets you control how long an
autoinstalled terminal entry remains available after the terminal has logged off. The
default value of zero means that the terminal entry is scheduled for deletion as
soon as the terminal is logged off. Otherwise, CICS schedules the deletion of the
TCTTE as a timer task.

In general, setting the delete delay to a nonzero value can improve the performance
of CICS when many autoinstalled terminals are logging on and off during the day.
However, this does mean that unused autoinstalled terminal entry storage is not
freed for use by other tasks until the delete delay interval has expired. This
parameter provides an effective way of defining a terminal whose storage lifetime is
somewhere between that of an autoinstalled terminal and a statically defined
terminal.

The effect of setting the delete delay to a nonzero value can have different effects
depending on the value of the restart delay:

Nonzero restart delay When the restart delay is nonzero, CICS catalogs
autoinstalled terminal entries in the global catalog.

If the delete delay is nonzero as well, CICS retains the terminal entry so that it is
re-used when the terminal logs back on. This can eliminate the overhead of:

* Deleting the terminal entry in virtual storage

Chapter 16. Networking and VTAM: improving performance 257

* An I/O to the catalog and recovery log
* Re-building the terminal entry when the terminal logs on again.

Zero restart delay When the restart delay is zero, CICS does not catalog
autoinstalled terminal entries in the global catalog whatever value is specified for
the delete delay.

If the delete delay is nonzero, CICS retains the terminal entry so that it is re-used
when the terminal logs back on. This can save the overhead of deleting the terminal
entry in virtual storage and the rebuilding of the terminal entry when the terminal
logs on again.

Effects

You can control the use of resource by autoinstall processing in three ways:

1. By using the transaction class limit to restrict the number of autoinstall tasks
that can concurrently exist (see page[358).

2. By using the CATA and CATD transactions to install and delete autoinstall
terminals dynamically. If you have a large number of devices autoinstalled,
shutdown can fail due to the MXT system initialization parameter being reached
or CICS becoming short on storage. To prevent this possible cause of shutdown
failure, you should consider putting the CATD transaction in a class of its own to
limit the number of concurrent CATD transactions.

3. By specifying AIQMAX to limit the number of devices that can be queued for
autoinstall. This protects against abnormal consumption of virtual storage by the
autoinstall process, caused as a result of some other abnormal event.

If this limit is reached, the AIQMAX system initialization parameter affects the
LOGON and BIND processing by CICS. CICS requests VTAM to stop passing
LOGON and BIND requests to CICS. VTAM holds such requests until CICS
indicates that it can accept further LOGONs and BINDs (this occurs when CICS
has processed a queued autoinstall request).

Recommendations

If the autoinstall process is noticeably slowed down by the AIQMAX limit, raise it. If

the CICS system shows signs of running out of storage, reduce the AIQMAX limit. If
possible, set the AIQMAX system initialization parameter to a value higher than that
reached during normal operations.

In a non-XRF environment, settings of (restart delay=0) and (delete delay=
hhmmss>0) are the most efficient for processor and DASD utilization. However, this
efficiency is gained at a cost of virtual storage, because the TCT entries are not
deleted until the delay period expires.

A value of zero for both restart delay and delete delay is the best overall setting for
many systems from an overall performance and virtual-storage usage point of view.

If restart delay is greater than zero (cataloging active), the performance of
autoinstall is significantly affected by the definition of the global catalog (DFHGCD) .
The default buffer specifications used by VSAM may not be sufficient in a high
activity system.

Because a considerable number of messages are sent to transient data during

logon and logoff, the performance of these output destinations should also be taken
into consideration.

258 CICS TS for z/0S: CICS Performance Guide

In an XRF environment, a restart delay value of greater than zero should give better
performance when catchup of a large number of autoinstalled terminals is
necessary.

How monitored

Monitor the autoinstall rate during normal operations by inspecting the autoinstall
statistics regularly.

Chapter 16. Networking and VTAM: improving performance 259

260 CICS TS for z/0S: CICS Performance Guide

Chapter 17. CICS Dispatcher: Performance and Tuning

The open transaction environment (OTE) function was added to CICS(R)
Transaction Server for OS/390(R), Version 1 Release 3 and later versions.

For an introduction to the topic, see fthe topic “System initialization parameters foi
fopen TCBs” in the CICS System Definition Guidel

MAXOPENTCBS

MAXOPENTCBS controls the total number of L8 and L9 mode TCBs that the CICS
region can have in operation at any time. Within this limit, there are no constraints
on how many of the TCBs in the pool are L8 TCBs, and how many are L9 TCBs..
These TCBS are used as follows:

+ L8 TCBs are used for CICSKEY OPENAPI application programs and OPENAPI
task related user exits (task related user exits always run in CICSKEY).

» CICS itself uses L8 TCBs when accessing doctemplates and HTTP static
responses that are stored on Hierarchical File System (HFS).

» For WebService requests and parsing XML CICS uses OPENAPI CICSKEY
programs which run on L8 TCBs.

* L9 TCBs are used for USERKEY OPENAPI application programs.

When CICS is connected to DB2 Version 6 or later, the CICS-DB2 Attachment
Facility operates with an OPENAPI task related user exit and hence uses L8 TCBs.

How dispatcher selects an L8 or L9 mode TCB

CICS dispatcher manages the pool of L8 and L9 mode TCBs up to the limit set by
the MAXOPENTCBS parameter. At any one time, the pool can consist of some
TCBs that are allocated to tasks, and others that are free. For example, if the
MAXOPENTCBsS is set to 10, at a particular time the pool could consist of 5 TCBs,
not all of which are allocated to running tasks. Also the 5 TCBs could be made up
of a mixture of L8 and L9 TCBs. Dispatcher attaches a new TCB when it can't find
a free TCB that is suitable.

Let us assume a task requires an L8 mode TCB, either because it is an OPENAPI

CICSKEY application, or because it is invoking an OPENAPI task related user exit,
which happens for example when an application issues an EXEC SQL request. The
process of allocating an L8 mode TCB is summarized in the following steps:

1. If the transaction already has an L8 mode TCB allocated, it is used.

2. If there is a free L8 mode TCB for the correct subspace, it is allocated and
used.

3. If the number of open TCBs is below the MAXOPENTCBS Ilimit, a new L8 mode
TCB is created, and associated with the task's subspace.

4. If the number of open TCBs is at the MAXOPENTCBS limit, but there is a free
L8 mode TCB with the wrong subspace, dispatcher destroys it and creates a
new one for the required subspace. This technique avoids suspending the task
until the number of TCBs is below the pool limit, and is called stealing. This
action is recorded in the CICS dispatcher TCB mode statistics under the count
of "TCB steals".

5. If the number of open TCBs is at the MAXOPENTCBS limit, but there is a free
L9 mode TCB, dispatcher destroys it and creates a an L8 TCB for the required
subspace. This technique avoids suspending the task until the number of TCBs

© Copyright IBM Corp. 1983, 2011 261

is below the pool limit, and is called stealing. This action is recorded in the
CICS dispatcher TCB mode statistics under the count of "TCB steals".

6. If the number of open TCBs is at the MAXOPENTCBS limit and there is no free
open TCB to steal, the task is suspended (with an OPENPOOL wait) until one
becomes free, or the MAXOPENTCBS limit is increased.

The various events that can occur during the TCB allocation process are recorded
in the dispatcher TCB pool statistics, and these are reported by either the
DFHSTUP or DFHOSTAT statistics programs. See the Dispatcher Domain statistics.

Setting MAXOPENTCBS

The value chosen for MAXOPENTCBS in CICS TS Version 3 Release 1 needs to
take account of the increased use of L8 TCBs in this release, and the new L9 mode
TCBs. Prior to CICS TS Version 3 Release 1, the pool consisted only of L8 mode
TCBs, which were used exclusively by OPENAPI task related user exits, in affect
the CICS-DB2 Attachment facility. Hence the value for MAXOPENTCBs could be
based on the requirements of your DB2 workload, and if transaction isolation was
being used, requirements to avoid stealing of TCBs between subspaces.

In CICS TS Version 3 Release 1, the setting of MAXOPENTCBSs has to take into
account the additional use of L8 TCBs by OPENAPI application programs running
in CICS key, and by applications using Web Services or XML for which CICS will
use L8 TCBs. When applications use the CICS document API with a document
template which resides on an HFS file, or when CICS Web support provides static
responses with a URIMAP definition using a document template or file stored on
HFS, this again causes CICS to use an L8 TCB for that task. Finally, OPENAPI
application programs running in user key, use L9 TCBs which reside in the same
pool.

1. If you are not using Transaction isolation, a good starting point for
MAXOPENTCBS is the value specfied for TCBLIMIT in the DB2CONN
definition. This represents the number of L8 TCBs you require to run your DB2
workload.

2. If you are using Transaction isolation, for your DB2 workload, a good starting
point for MAXOPENTCRBS is the value of max tasks (MXT) in the SIT. This will
minimize the possibility of TCB stealing due to a TCB being allocated to the
wrong subspace. See How dispatcher selects an L8 or L9 mode TCB. This
statement does assume that the value of max tasks has been appropriately
tuned. Remember, too high a value for max tasks will undoubtedly cause short
on storage problems for the CICS region. Likewise, too high a value of
MAXOPENTCBS will eventually cause storage problems outside of the CICS
DSAs, as MVS TCBs still consume a storage below the 16MB line.

3. Add a value to cater for the peak number of tasks using Web Services, XML, or
document templates residing on HFS.

4. Add a value to cater for the peak number of tasks running as OPENAPI
applications (non-DB2).

The value for MAXOPENTCBS can be set as a parameter in the system
initialization table (SIT) or as a SIT override. It can be inquired upon and changed
dynamically using the INQUIRE and SET DISPATCHER commands.

262 CICS TS for z/0S: CICS Performance Guide

MAXSSLTCBS

You can use the dispatcher TCB statistics from the DFHOSTAT and DFHSTUP utility
programs to monitor the S8 TCBs in the SSL pool. The maximum number of TCBs
is set by the MAXSSLTCBS system initialization parameter. If you want to improve
the performance of SSL, you can use the dispatcher reports to find out if there are
a large number of tasks waiting for an S8 TCB. Also look at the number of tasks
that have queued. If both fields report a large number, increase the maximum
number of S8 TCBs using the CEMT INQ DISPATCHER or CEMT SET
DISPATCHER commands. If you have a small number of tasks queued, but a large
number of waits, you can decide whether you want to increase the number of S8
TCBs. Increasing the number by one or two could make a difference to the number
of waits and reduce the tasks queued, without causing significant overheads in
storage.

The maximum number of S8 TCBs that you can set is 1024. However, setting a
very large number of S8 TCBs can also impact performance because of the amount
of storage used. If CICS runs out of storage, you get a TCB attach failure. This is
reported in the dispatcher reports for the S8 TCB mode statistics.

Chapter 17. CICS Dispatcher: Performance and Tuning 263

264 CICS TS for z/0S: CICS Performance Guide

Chapter 18. CICS Web support: performance and tuning

CICS Web support is a collection of CICS services that enable a CICS region to act
both as an HTTP server, and as an HTTP client. [The CICS Internet Guidd explains
the different components involved in CICS Web support.

* In each CICS region, the maximum number of concurrent connections between
CICS as an HTTP server and Web clients, or between CICS as an HTTP client
and a server on the Web, can in theory be up to 64000. The MXT setting does
not directly limit the number of concurrent connections, because:

— For CICS as an HTTP server, the CWXN transaction (Web attach task) does
not remain in the system for the duration of a persistent connection, but
terminates after each request. This means that between requests, a persistent
connection can exist, being monitored by the Sockets listener task (CSOL),
without being associated with an active task.

— For CICS as an HTTP client, an application program can open and maintain
more than one persistent connection to a server on the Web, and these are
covered by the single active task for the application program.

However, the MXT setting, and any limitations that you set in the transaction
class definitions for CICS Web support transactions, can be used to limit the
amount of CICS Web support activity in the CICS region.

* In practical terms, the number of connections that can be active between a single
CICS region and the Web is primarily limited by the storage available in the CICS
region. |“Storage requirements for CICS Web support’1 explains the most
significant storage requirements for CICS Web support activities.

For CICS as an HTTP server, the priority of the various transactions involved for
CICS Web support is significant, and incorrect settings might lead to a
short-on-storage situation. [‘Priorities for CICS Web support transactions (CWXN |
[CWXU, CWBA)” on page 267 tells you how to set priorities to avoid issues in this
area.

For CICS as an HTTP server, HTTP responses can be generated by an
application, or provided from a static document, which can be either an HFS file
or a CICS document template. A CICS document template can be a variety of
different CICS resources, including a program, a partitioned data set or a file.
[‘Relative performance of CICS Web support response methods” on page 267
explains the differences in performance between these response types.

» If you are using the Secure Sockets Layer (SSL), the security measures (such as
encryption and decryption and the SSL handshake) cause a slight increase in
CPU per transaction. [‘Managing the performance of Secure Sockets Layer|
[support” on page 268]|tells you how to manage the necessary performance
impact of these security measures.

Storage requirements for CICS Web support

The number of connections that can be sustained between a single CICS region
and the Web is primarily limited by the storage available in the CICS region.The
major influences on storage usage for CICS Web support are:

» Basic storage requirement for each connection. About 4K of storage is
required for each connection between CICS and the Web.

* For CICS as an HTTP server: Size of requests received from Web clients.
The total amount of data that CICS accepts for a single request can be limited by
the MAXDATALEN attribute of the TCPIPSERVICE definition.

— The request line and HTTP headers are stored in a temporary storage queue.

© Copyright IBM Corp. 1983, 2011 265

— The request body is stored in CICS main storage. Unwanted data from a
request body can be ignored by an application program, but the Web attach
task always reads the complete message in order to clear the data from the
socket, and places all the data in storage.

— Storage used for a request received from a Web client is freed when a
response has been sent to the request.

* For CICS as an HTTP client: Size of responses received from Web servers.
There is no specific way to limit the amount of data that CICS accepts for a
response. (The HTTP client facility of CICS Web support is not designed for use
as a browser, so your requests should return only known resources that you
have selected.)

— The status line and HTTP headers are stored in a temporary storage queue.

— The response body is stored in CICS main storage. Unwanted data from a
response body can be ignored by an application program, but the complete
message is read and placed in CICS storage.

— Storage used for responses received from Web servers is required for the
duration of the connection with the Web server. The storage obtained for the
first response is overwritten by each subsequent response that is received for
the connection, or released and re-obtained if a subsequent response requires
a larger amount of storage. The storage is freed when the connection is
closed by the application program using a WEB CLOSE command (or at end
of task if the connection has not previously been closed). The maximum
amount of storage that is obtained for each connection is therefore equal to
the size of the largest message received on the connection.

* For CICS as an HTTP server and CICS as an HTTP client: Size of messages
produced by CICS (requests or responses). While a request or response is
being assembled for sending out from CICS, storage is required for the HTTP
headers, and also for the message body.

— The HTTP headers are stored in a temporary storage queue.
— The message body is stored in CICS main storage.

— Storage used for a request or response sent out from CICS is freed when the
message is sent.

» Code page conversion. Code page conversion can be carried out for any
message body received or sent by CICS, if it is specified by an application
program, analyzer program, or URIMAP definition in the processing path for the
request. The message body is in CICS main storage.

— For conversion between the EBCDIC code page 037 and the ASCII code
page ISO-8859-1, CICS writes the converted message body to the same area
of storage as the original message body, so no additional storage is used.

— For other types of code page conversion, CICS requires additional storage to
contain the converted message body. Depending on the character sets used,
the size of this additional storage area can range from the same size as the
original message body, to a theoretical maximum of four times the size of the
original message body (which is unlikely). For example, 2MB of message
body data would require at least 4MB of storage in total. Double-byte
character sets (DBCS) or multi-byte character sets are likely to require larger
storage areas within this range.

266 CICS TS for z/0S: CICS Performance Guide

Priorities for CICS Web support transactions (CWXN, CWXU, CWBA)

[‘Task structure for CICS Web support” in the CICS Internet Guide| explains the
transactions that are used for CICS Web support processing, and how they interact
with each other. A Web attach task is used to receive requests from Web clients
and perform initial checks. The default transaction ID for a Web attach task is
CWXN for the HTTP protocol, or CWXU for the USER protocol. (Another
transaction ID can be used instead.) Alias transactions, for which the CICS-supplied
default name is CWBA, are used to cover subsequent processing for
application-generated responses.

If you set the priority of the CWXN or CWXU transaction (or its alias) higher than
the priority of the alias transactions used for application-generated responses (such
as CWBA), this can result in a build-up of requests that have been received but not
yet processed, which may lead to a short-on-storage situation.

The default priorities for the CWXN or CWXU transaction are set to 1, and the
default priority for the CICS-supplied CWBA transaction is also set to 1. You can
adjust these priorities depending on your workload. Make sure the priorities of the
alias transactions used for application-generated responses (like CWBA) are equal
to, or higher than, the priority of the transactions associated with Web attach tasks
(like CWXN or CWXU). Bear this in mind if you are setting up your own transaction
definitions in place of the CICS-supplied defaults.

Relative performance of CICS Web support response methods

‘Planning your CICS Web support architecture for CICS as an HTTP server” in the]
CICS Internet Guide|explains the different methods that you can use to respond to
a Web client's request, and the components that are used for each response
method.

Application-generated responses use more resources than static responses.
Application-generated responses require an alias transaction to be attached
(although the Web attach task terminates when processing is handed over to the
alias transaction). An analyzer program, converter program, or more than one
user-written application program might be involved in processing the request and
producing the response. Typically, greater elapsed time and processor time is
required to produce the response.

Static responses involve only the Web attach task, a URIMAP definition, and the
source document for the response body. Performance for a static response is better
than for an application-generated response, so if you are using an architecture with
an application program and analyzer program to deliver a simple response
document, you should consider converting this to a static response. Within this
category, performance is further influenced by the choice of source document used
for the response body, which can be:

* A z/OS UNIX System Services HFS file, called directly from the URIMAP
definition using the HFSFILE option.

* A z/OS UNIX System Services HFS file, defined as a CICS document template,
and called from the URIMAP definition using the DOCTEMPLATE option.

* A CICS document template stored in a MVS partitioned data set or PDSE.
* A CICS document template stored in a transient data queue.
» A CICS document template stored in a temporary storage queue.

Chapter 18. CICS Web support: performance and tuning 267

» A CICS document template stored in a CICS file (ESDS, RRDS or another type
of data set).

* A CICS document template contained in a CICS program.

* A CICS document template loaded by an exit program. This could be loaded
from a location such as DB2 or another database manager.

[The CICS Application Programming Guidelhas more information about the different
types of CICS document template, and how to set them up. If you are using a CICS
document template to provide a static response, ensure that the definition is
installed before you use it. Among the types of document template, the fastest
results can generally be achieved by storing your templates as CICS programs.
However, note that these modules are managed like other CICS loaded programs,
and may be flushed out by program compression when storage is constrained.

Managing the performance of Secure Sockets Layer support

Transactions using the Secure Sockets Layer (SSL) for Web security will increase
in CPU per transaction because of the SSL handshake that occurs when the
sockets connection is established. You can optimize SSL performance by:

* Only using SSL for applications that really need to use encrypted data flows.

« Utilizing the zSeries® cryptographic hardware to fully benefit from the
performance improvements to SSL encryption, which relies upon the z/OS
Integrated Cryptographic Facility (ICSF). You can customize your encryption
settings to use only the cipher suites that use ICSF, such as the DES and SHA-1
cipher suites.

Note: In z/OS 1.6, System SSL uses the CP Assist for Cryptographic function
(CPACF) directly.

* Increasing the value of the SSLDELAY parameter. CICS stores session ids for
each negotiation with a client in the SSL cache, so that only partial handshakes
are required with clients that have been previously authenticated. Increasing the
value of the SSLDELAY parameter retains the session ids in the cache for longer,
optimizing the time it takes to perform SSL negotiations over a longer period of
time. The SSLDELAY parameter does not apply to caching across a sysplex.

 Increasing the number of available S8 TCBs in the SSL pool. Each task that
requires SSL uses an S8 TCB for the duration of the SSL negotiation. Increasing
the number of available TCBs allows more simultaneous SSL connections to take
place. However, increasing the number of TCBs too much will impact storage
below the line.

* Implementing SSL caching across a sysplex, if appropriate for your system. If the
cache is shared between a number of CICS regions, the throughput of SSL
connections will improve. You can use sysplex caching if you have multiple CICS
socket-owning regions that accept SSL connections at the same IP address.

Keeping the socket open also removes the need to perform a full SSL handshake
on the second and any subsequent HTTP request. This is the default action due to
HTTP 1.1 persistence.

You should also only use client authentication (SSL(CLIENTAUTH) in the
TCPIPSERVICE definition) when you really need your clients to identify themselves
with a client certificate. This is because client authentication involves more network
interchanges during the SSL handshake, and more internal CICS processing to
handle the received certificate. This includes a search of the external security
manager's database to locate a user ID to associate with the certificate.

268 CICS TS for z/0S: CICS Performance Guide

Monitoring the SSL pool

You can use the dispatcher TCB statistics from the DFHOSTAT and DFHSTUP utility
programs to monitor the S8 TCBs in the SSL pool. The maximum number of TCBs
is set by the MAXSSLTCBS system initialization parameter. If you want to improve
the performance of SSL, you can use the dispatcher reports to find out if there are
a large number of tasks waiting for an S8 TCB. Also look at the number of tasks
that have queued. If both fields report a large number, increase the maximum
number of S8 TCBs using the CEMT INQ DISPATCHER or CEMT SET
DISPATCHER commands. If you have a small number of tasks queued, but a large
number of waits, you can decide whether you want to increase the number of S8
TCBs. Increasing the number by one or two could make a difference to the number
of waits and reduce the tasks queued, without causing significant overheads in
storage.

The maximum number of S8 TCBs that you can set is 1024. However, setting a
very large number of S8 TCBs can also impact performance because of the amount
of storage used. If CICS runs out of storage, you get a TCB attach failure. This is
reported in the dispatcher reports for the S8 TCB mode statistics.

Chapter 18. CICS Web support: performance and tuning 269

270 CICS TS for z/0S: CICS Performance Guide

Chapter 19. VSAM and file control: improving performance

This chapter discusses performance tuning issues related to VSAM and file control.
* ['VSAM tuning: general objectives’|
« [“Defining VSAM resource usage (LSRPOOL)” on page 280|

« [‘Defining VSAM buffer allocations for NSR (INDEXBUFFERS and|
DATABUFFERS)” on page 281|

- [“Defining VSAM buffer allocations for LSR” on page 282|
[‘Defining VSAM string settings for NSR (STRINGS)” on page 282|
« [“Defining VSAM string settings for LSR (STRINGS)” on page 283

« [“Specifying maximum keylength for LSR (KEYLENGTH and MAXKEYLENGTH)’|
on page 284

. :“Specifying resource percentile for LSR (SHARELIMIT)” on page 285|
. :“Using VSAM local shared resources (LSR)” on page 285|

. “‘Using Hiperspace buffers” on page 286
* [‘Permitting VSAM subtasking (SUBTSKS=1)" on page 282]
. “‘Using data tables to improve performance” on page 288
* |‘Using coupling facility data tables to gain performance benefits” on page 290|
« [Performance aspects of VSAM record-level sharing (RLS)” on page 29€|

VSAM tuning: general objectives

Tuning consists of providing a satisfactory level of service from a system at an
acceptable cost. A satisfactory service, in the case of VSAM, is likely to be obtained
by providing adequate buffers to minimize physical I/O and, at the same time,
allowing several operations concurrently on the data sets.

The costs of assigning additional buffers and providing for concurrent operations on
data sets are the additional virtual and real storage that is required for the buffers
and control blocks.

Several factors influence the performance of VSAM data sets. The rest of this
section reviews these and the following sections summarize the various related
parameters of file control.

Note that, in this section, a distinction is made between “files” and “data sets”:
* A “file” means a view of a data set as defined by an installed CICS file resource
definition and a VSAM ACB.

* A “data set” means a VSAM “sphere”, including the base cluster with any
associated AIX® paths.

Local shared resources (LSR) or Nonshared resources (NSR)

The first decision to make for each file is whether to use LSR or NSR for its VSAM
buffers and strings. It is possible to use up to eight separate LSR pools for file
control files. There is also a decision to make on how to distribute the data sets
across the LSR pools.

Note that all files opened for access to a particular VSAM data set normally must
use the same resource type: see|‘Data set name sharing” on page 278

© Copyright IBM Corp. 1983, 2011 271

CICS provides separate LSR buffer pools for data and index records. If only data
buffers are specified, only one set of buffers are built and used for both data and
index records.

LSR files share a common pool of buffers and a common pool of strings (that is,
control blocks supporting the I/O operations). Other control blocks define the file
and are unique to each file or data set. NSR files or data sets have their own set of
buffers and control blocks.

Some important differences exist between NSR and LSR in the way that VSAM
allocates and shares the buffers.

In NSR, the minimum number of data buffers is STRNO + 1, and the minimum
index buffers (for KSDSs and AIX paths) is STRNO. One data and one index buffer
are preallocated to each string, and one data buffer is kept in reserve for CI splits. If
there are extra data buffers, these are assigned to the first sequential operation;
they may also be used to speed VSAM CA splits by permitting chained 1/0
operations. If there are extra index buffers, they are shared between the strings and
are used to hold high-level index records, thus providing an opportunity for saving
physical 1/0.

In LSR, there is no preallocation of buffers to strings, or to particular files or data
sets. When VSAM needs to reuse a buffer, it picks the buffer that has been
referenced least recently. Strings are always shared across all data sets.

Before issuing a read to disk when using LSR, VSAM first scans the buffers to
check if the control interval it requires is already in storage. If so, it may not have to
issue the read. This buffer “lookaside” can reduce /O significantly.

Another important difference between LSR and NSR is in concurrent access to
VSAM Cls. NSR allows multiple copies of a Cl in storage; you can have one (but
only one) string updating a Cl and other strings reading different copies of the same
Cl. In LSR, there is only one copy of a Cl in storage; the second of the requests
must queue until the first operation completes. LSR permits several read operations
to share access to the same buffer, but updates require exclusive use of the buffer
and must queue until a previous update or previous reads have completed; reads
must wait for any update to finish. It is possible, therefore, that transactions with
concurrent browse and update operations that run successfully with NSR may, with
LSR, hit a deadlock as the second operation waits unsuccessfully for the first to
complete.

NSR is not supported for transactions that use transaction isolation.

Transactions should always be designed and programmed to avoid deadlocks. For
further discussions, see the CICS Application Programming Guide

LSR has significant advantages, by providing:
* More efficient use of virtual storage because buffers and strings are shared.

+ Better performance because of better buffer lookaside, which can reduce I/O
operations.

» Self-tuning because more buffers are allocated to busy files and frequently
referenced index control intervals are kept in its buffers.

» Better read integrity because there is only one copy of a Cl in storage.

272 CICS TS for z/0S: CICS Performance Guide

» Use of synchronous file requests and a UPAD exit. CA and CI splits for LSR files
do not cause either the subtask or main task to wait. VSAM takes the UPAD exit
while waiting for physical 1/0O, and processing continues for other CICS work
during the CA/CI split.

File control requests for NSR files are done asynchronously, however, and still
cause the CICS main task or subtask to stop during a split.

» Support for transaction isolation.

NSR, on the other hand:
» Allows for specific tuning in favor of a particular data set
» Can provide better performance for sequential operations.

The general recommendation is to use LSR for all VSAM data sets except where
you have one of the following situations:

» Afile is very active but there is no opportunity for lookaside because, for
instance, the file is very large.

» High performance is required by the allocation of extra index buffers.

* Fast sequential browse or mass insert is required by the allocation of extra data
buffers.

» Control area (CA) splits are expected for a file, and extra data buffers are to be
allocated to speed up the CA splits.

If you have only one LSR pool, a particular data set cannot be isolated from others
using the same pool when it is competing for strings, and it can only be isolated
when it is competing for buffers by specifying unique CI sizes. In general, you get
more self-tuning effects by running with one large pool, but it is possible to isolate
busy files from the remainder or give additional buffers to a group of high
performance files by using several pools. It is possible that a highly active file has
more successful buffer lookaside and less I/O if it is set up as the only file in an
LSR subpool rather than using NSR. Also the use of multiple pools eases the
restriction of 255 strings for each pool.

Number of strings

The next decision to be made is the number of concurrent accesses to be
supported for each file and for each LSR pool.

This is achieved by specifying VSAM “strings”. A string is a request to a VSAM data
set requiring “positioning” within the data set. Each string specified results in a
number of VSAM control blocks (including a “placeholder”) being built.

VSAM requires one or more strings for each concurrent file operation. For
nonupdate requests (for example, a READ or BROWSE), an access using a base
needs one string, and an access using an AIX needs two strings (one to hold
position on the AlX and one to hold position on the base data set). For update
requests where no upgrade set is involved, a base still needs one string, and a path
two strings. For update requests where an upgrade set is involved, a base needs
1+n strings and a path needs 2+n strings, where n is the number of members in the
upgrade set (VSAM needs one string per upgrade set member to hold position).
Note that, for each concurrent request, VSAM can reuse the n strings required for
upgrade set processing because the upgrade set is updated serially. See
icalculation of LSR pool parameters” on page 277

Chapter 19. VSAM and file control: improving performance 273

A simple operation such as read direct frees the string or strings immediately, but a
read for update, mass insert, or browse retains them until a corresponding update,
unlock, or end browse is performed.

The interpretation of the STRNO parameter by CICS and by VSAM differs
depending upon the context:

» The equivalent STRINGS parameter of the file definition has the same meaning
as the STRNO in the VSAM ACB for NSR files: that is, the actual number of
concurrent outstanding VSAM requests that can be handled. When AlX paths or
upgrade sets are used, the actual number of strings which VSAM allocates to
support this may be greater than the STRINGS value specified.

* The equivalent STRINGS parameter of the LSR pool definition (LSRPOOL) has
the same meaning as the STRNO in the VSAM BLDVRP macro: that is, the
absolute number of strings to be allocated to the resource pool. Unless an LSR
pool contains only base data sets, the number of concurrent requests that can be
handled is less than the STRINGS value specified.

Note: There are some special considerations for setting the STRINGS value for an
ESDS file (see ['Number of strings considerations for ESDS files” on page]

E79).

For LSR, it is possible to specify the precise numbers of strings, or to have CICS
calculate the numbers. The number specified in the LSR pool definition is the actual
number of strings in the pool. If CICS is left to calculate the number of strings, it
derives the pool STRINGS from the RDO file definition and interprets this, as with
NSR, as the actual number of concurrent requests. (For an explanation of CICS
calculation of LSR pool parameters, see ['CICS calculation of LSR pool parameters’|

on page 277

You must decide how many concurrent read, browse, updates, mass inserts, and so
on you need to support.

If access to a file is read only with no browsing, there is no need to have a large
number of strings; just one may be sufficient. Note that, while a read operation only
holds the VSAM string for the duration of the request, it may have to wait for the
completion of an update operation on the same CI.

In general (but see [‘Number of strings considerations for ESDS files” on page 275)
where some browsing or updates are used, STRINGS should be set to 2 or 3
initially and CICS file statistics should be checked regularly to see the proportion of
wait-on-strings encountered. Wait-on-strings of up to 5% of file accesses would
usually be considered quite acceptable. You should not try, with NSR files, to keep
wait-on-strings permanently zero.

CICS manages string usage for both files and LSR pools. For each file, whether it
uses LSR or NSR, CICS limits the number of concurrent VSAM requests to the
STRINGS= specified in the file definition. For each LSR pool, CICS also prevents
more requests being concurrently made to VSAM than can be handled by the
strings in the pool. Note that, if additional strings are required for upgrade-set
processing at update time, CICS anticipates this requirement by reserving the
additional strings at read-for-update time. If there are not enough file or LSR pool
strings available, the requesting task waits until they are freed. The CICS statistics
give details of the string waits.

274 CICS TS for z/0S: CICS Performance Guide

Size of control

When deciding the number of strings for a particular file, consider the maximum

number of concurrent tasks. Because CICS command level does not allow more
than one request to be outstanding against a particular data set from a particular
task, there is no point in allowing strings for more concurrent requests.

If you want to distribute your strings across tasks of different types, the transaction
classes may also be useful. You can use transaction class limits to control the
transactions issuing the separate types of VSAM request, and for limiting the
number of task types that can use VSAM strings, thereby leaving a subset of
strings available for other uses.

All placeholder control blocks must contain a field long enough for the largest key
associated with any of the data sets sharing the pool. Assigning one inactive file
that has a very large key (primary or alternate) into an LSR pool with many strings
may use excessive storage.

Number of strings considerations for ESDS files
There are some special performance considerations when choosing a STRINGS
value for an ESDS file.

If an ESDS is used as an ‘add-only’ file (that is, it is used only in write mode to add
records to the end of the file), a string number of 1 is strongly recommended. Any
string number greater than 1 can significantly affect performance, because of
exclusive control conflicts that occur when more than one task attempts to write to
the ESDS at the same time.

If an ESDS is used for both writing and reading, with writing, say, being 80% of the
activity, it is better to define two file definitions—using one file for writing and the
other for reading.

intervals

The size of the data set control intervals is not an parameter specified to CICS; it is
defined through VSAM AMS. However, it can have a significant performance effect
on a CICS system that provides access to the control interval.

In general, direct I/O runs slightly more quickly when data Cls are small, whereas
sequential 1/0 is quicker when data Cls are large. However, with NSR files, it is
possible to get a good compromise by using small data Cls but also assigning extra
buffers, which leads to chained and overlapped sequential I/O. However, all the
extra data buffers get assigned to the first string doing sequential 1/0.

VSAM functions most efficiently when its control areas are the maximum size, and it
is generally best to have data Cls larger than index Cls. Thus, typical Cl sizes for
data are 4KB to 12KB and, for index, 1KB to 2KB.

In general, you should specify the size of the data ClI for a file, but allow VSAM to
select the appropriate index Cl to match. An exception to this is if key compression
turns out to be less efficient than VSAM expects it to be. In this case, VSAM may
select too small an index CI size. You may find an unusually high rate of CA splits
occurring with poor use of DASD space. If this is suspected, specify a larger index
ClL.

In the case of LSR, there may be a benefit in standardizing on the ClI sizes,
because this allows more sharing of buffers between files and thereby allow a lower
total number of buffers. Conversely, there may be a benefit in giving a file unique ClI
sizes to prevent it from competing for buffers with other files using the same pool.

Chapter 19. VSAM and file control: improving performance 275

Try to keep Cl sizes at 512, 1KB, 2KB, or any multiple of 4KB. Unusual Cl sizes
like 26KB or 30KB should be avoided. A Cl size of 26KB does not mean that
physical block size will be 26KB; the physical block size will most likely be 2KB in
this case (it is device-dependent).

Number of buffers (NSR)

The next decision is the number of buffers to be provided for each file. Enough
buffers must be provided to support the concurrent accesses specified in the
STRINGS parameter for the file (in fact VSAM enforces this for NSR).

Specify the number of data and index buffers for NSR using the DATABUFFER and
INDEXBUFFER parameters of the file definition. It is important to specify sufficient
index buffers. If a KSDS consists of just one control area (and, therefore, just one
index Cl), the minimum index buffers equal to STRINGS is sufficient. But when a
KSDS is larger than this, at least one extra index buffer needs to be specified so
that at least the top level index buffer is shared by all strings. Further index buffers
reduces index I/O to some extent.

DATABUFFERS should generally be the minimum at STRINGS + 1, unless the aim
is to enable overlapped and chained 1/O in sequential operations or it is necessary
to provide the extra buffers to speed up CA splits.

Note that when the file is an AIX path to a base, the same INDEXBUFFERS (if the
base is a KSDS) and DATABUFFERS are used for AIX and base buffers (but see
['Data set name sharing” on page 278).

Number of buffers (LSR)

The set of buffers of one size in an LSR pool is called a “subpool.” The number of
buffers for each subpool is controlled by the DATA and INDEX parameters of the
LSRPOOL definition It is possible to specify precise numbers or to have CICS
calculate the numbers. (The method used by CICS to calculate the number of
buffers is described below.)

Allowing CICS to calculate the LSR parameters is easy but it incurs additional
overhead (when the first file that needs the LSR pool is opened) to build the pool.
Consider the following factors if you allow CICS to calculate an LSR pool:

» CICS must read the VSAM catalog for every file that is specified to use the pool.
This in itself may be an unacceptable overhead.

» The overhead is significantly increased if the data sets involved are migrated at
the time that CICS performs the calculation. This is because, to enable CICS to
read the VSAM catalog for each data set associated with the LSR pool, each
data set has to be recalled.

Not only can a single recall cause a significant delay for the task that caused the
recall, but it is a synchronous operation that delays other activities that CICS is
running under the same TCB.

You can avoid these delays by designing your SMS storage classes and
migration policies to avoid CICS data sets being migrated. See the DFSMShsm
Storage Administration Reference and the DFSMShsm Storage Administration
Guide for information about setting data set migration criteria.

CICS outputs an information message, DHFC0989, when a recall is necessary,
effectively advising you that the consequent delay is not an error situation.

* An LSR pool calculated by CICS cannot be fine-tuned by specifying actual sizes
for each buffer.

276 CICS TS for z/0S: CICS Performance Guide

When making changes to the size of an LSR pool, refer to the CICS statistics
before and after the change is made. These statistics show whether the proportion
of VSAM reads satisfied by buffer lookaside is significantly changed or not.

In general, you would expect to benefit more by having extra index buffers for
lookaside, and less by having extra data buffers. This is a further reason for
standardizing on LSR data and index CI sizes, so that one subpool does not have a
mix of index and data Cls in it.

Note: Data and index buffers are specified separately with the LSRPOOL definition.
Thus, there is not a requirement to use ClI size to differentiate between data
and index values.

Take care to include buffers of the right size. If no buffers of the required size are
present, VSAM uses the next larger buffer size.

CICS calculation of LSR pool parameters

If you have not specified LSR parameters for a pool, CICS calculates for you the
buffers and strings required. To do this, it scans all the installed file resource
definitions for files specified to use the pool. For each, it uses:

* From the CICS file resource definitions:

— The number of strings, as specified on the STRINGS parameter
* From the VSAM catalog:

— The levels of index for each of these files

— The Cl sizes

— The keylengths for the base, the path (if it is accessed through an AIX path),
and upgrade set AlXs.

Note: If you have specified only buffers or only strings, CICS performs the
calculation for what you have not specified.

The following information helps you calculate the buffers required. A particular file
may require more than one buffer size. For each file, CICS determines the buffer
sizes required for:

* The data component

* The index component (if a KSDS)

* The data and index components for the AIX (if it is an AIX path)

* The data and index components for each AIX in the upgrade set (if any).

The number of buffers for each is calculated as follows:

» For data components (base and AlX) = (STRINGS= in the file resource definition
entry) + 1

* For index components (base and AlX) = (STRINGS= in the file resource
definition entry) + (the number of levels in the index) — 1

» For data and index components for each AlX in the upgrade set, one buffer each.

When this has been done for all the files that use the pool, the total number of
buffers for each size is:

* Reduced to either 50% or the percentage specified in the SHARELIMIT in the
LSRPOOL definition. The SHARELIMIT parameter takes precedence.

* If necessary, increased to a minimum of three buffers.

Chapter 19. VSAM and file control: improving performance 277

* Rounded up to the nearest 4KB boundary.

To calculate the number of strings, CICS determines the number of strings to
handle concurrent requests for each file as the sum of:

* STRINGS parameter value for the base
* STRINGS parameter value for the AIX (if it is an AIX path)

* n strings if there is an upgrade set (where n is the number of members in the
upgrade set).

Note: If the LSR pool is calculated by CICS and the data sets have been archived
by HSM, when the first file that needs the LSR pool is opened, the startup
time of a CICS system can be considerably lengthened because the data
sets are needed one by one. CICS obtains the necessary catalog
information, but it does not open the database. Therefore the database is still
effectively archived. This problem recurs when the region is started again,
and remains until the data set has been opened.

When the strings have been accumulated for all files, the total is:

* Reduced to either 50% or the percentage specified in the SHARELIMIT
parameter in the LSR pool definition. The SHARELIMIT parameter takes
precedence.

* Reduced to 255 (the maximum number of strings allowed for a pool by VSAM).
* Increased to the largest specified STRINGS value for a particular file.

The parameters calculated by CICS are shown in the CICS statistics.

Switching data sets from RLS mode to LSR mode

Although it is not generally recommended, there may be occasions when you need
to switch a data set from RLS mode to non-RLS mode (for example, to read-only
LSR mode during a batch update). This could lead to the LSR pools that are not
explicitly defined, and which CICS builds using default values, not having sufficient
resources to support files switched to LSR mode after the pool has been built.

To avoid files failing to open because of the lack of adequate resources, you can
specify that CICS should include files opened in RLS mode when it is calculating
the size of an LSR pool using default values. To specify the inclusion of files
defined with RLSACCESS(YES) in an LSR pool being built using values that CICS
calculates, use the RLSTOLSR=YES system initialization parameter
(RLSTOLSR=NO is the default)

See [the CICS System Definition Guidd for more information about the RLSTOLSR
parameter.

Data set name sharing

Data set name (DSN) sharing (MACRF=DSN specified in the VSAM ACB) is the
default for all VSAM data sets. It causes VSAM to create a single control block
structure for the strings and buffers required by all the files that relate to the same
base data set cluster, whether as a path or direct to the base. VSAM makes the
connection at open time of the second and subsequent files. Only if DSN sharing is
specified, does VSAM realize that it is processing the same data set.

This single structure:
* Provides VSAM update integrity for multiple ACBs updating one VSAM data set

278 CICS TS for z/0S: CICS Performance Guide

» Allows the use of VSAM share options 1 or 2, while still permitting multiple
update ACBs within the CICS region

+ Saves virtual storage.

DSN sharing is the default for files using both NSR and LSR. The only exception to
this default is made when opening a file that has been specified as read-only
(READ=YES or BROWSE=YES) and with DSNSHARING(MODIFYREQS) in the file
resource definition. CICS provides this option so that a file (represented by an
installed file resource definition) can be isolated from other users of that same data
set in a different LSR pool or in NSR by suppressing DSN sharing. CICS ignores
this parameter for files with update, add, or delete options because VSAM would
not then be able to provide update integrity if two file control file entries were
updating the same data set concurrently.

The NSRGROUP= parameter is associated with DSN sharing. It is used to group
together file resource definitions that are to refer to the same VSAM base data set.
NSRGROUP=name has no effect for data sets that use LSR.

When the first member of a group of DSN-sharing NSR files is opened, CICS must
specify to VSAM the total number of strings to be allocated for all file entries in the
group, by means of the BSTRNO value in the ACB. VSAM builds its control block
structure at this time regardless of whether the first data set to be opened is a path
or a base. CICS calculates the value of BSTRNO used at the time of the open by
adding the STRINGS values in all the files that share the same NSRGROUP=
parameter.

If you do not provide the NSRGROUP= parameter, the VSAM control block
structure may be built with insufficient strings for later processing. This should be
avoided for performance reasons. In such a case, VSAM invokes the dynamic string
addition feature to provide the extra control blocks for the strings as they are
required, and the extra storage is not released until the end of the CICS run.

AIX considerations

For each AlIX defined with the UPGRADE attribute, VSAM upgrades the AIX
automatically when the base cluster is updated.

For NSR, VSAM uses a special set of buffers associated with the base cluster to do
this. This set consists of two data buffers and one index buffer, which are used
serially for each AIX associated with a base cluster. It is not possible to tune this
part of the VSAM operation.

For LSR, VSAM uses buffers from the appropriate subpool.

Care should be taken when specifying to VSAM that an AlX should be in the
upgrade set. Whenever a new record is added, an existing record deleted, or a
record updated with a changed attribute key, VSAM updates the AlXs in the
upgrade set. This involves extra processing and extra I/O operations.

Situations that cause extra physical 1/0

Listed below are some situations that can lead to a lot of physical 1/0 operations,
thus affecting both response times and associated processor pathlengths:

* When a KSDS is defined with SHROPT of 4, all direct reads cause a refresh of
both index and data buffers (to ensure latest copy).

Chapter 19. VSAM and file control: improving performance 279

* Any sequence leading to CICS issuing ENDREQ invalidates all data buffers
associated with the operation. This may occur when you end a get-update
(without the following update), a browse (even a start browse with a
no-record-found response), a mass-insert or any get-locate from a program. If the
operation is not explicitly ended by the program, CICS ends the operation at
syncpoint or end of task.

 If there are more data buffers than strings, a start browse causes at least half the
buffers to participate immediately in chained 1/O. If the browse is short, the
additional 1/0 is unnecessary.

Other VSAM definition parameters

Free space parameters need to be selected with care, and can help reduce the
number of Cl and CA splits. Where records are inserted all over a VSAM data set, it
is appropriate to include free space in each Cl. Where the inserts are clumped, free
space in each CA is required. If all the inserts take place at just a few positions in
the file, VSAM should be allowed to split the CA, and it is not necessary to specify
any free space at all.

Adding records to the end of a VSAM data set does not cause CI/CA splits. Adding
sequential records to anywhere but the end causes splits. An empty file with a
low-value dummy key tends to reduce splits; a high-value key increases the number
of splits.

Defining VSAM resource usage (LSRPOOL)

Effects

Where useful

The default for all VSAM data sets is LSR. If multiple pools are supported CICS
provides for the use of pools 1 through 8.

The LSRPOOLID parameter specifies whether a file is to use LSR or NSR and, if
LSR, which pool.

The LSRPOOLID parameter can be used in CICS systems with VSAM data sets.

Limitations
All files with the same base data set, except read-only files with
DSNSHARING(MODIFYREQS) specified in the file definition, must use either the
same LSR pool or all use NSR.
SERVREQ=REUSE files cannot use LSR.

Recommendations

See ['VSAM tuning: general objectives” on page 271.|Consider removing files from
an LSR pool.

How implemented

The resource usage is defined by the LSRPOOL definition on the CSD. For more
information about the CSD, see [the CICS Resource Definition Guide,

280 CICS TS for z/0S: CICS Performance Guide

Defining VSAM buffer allocations for NSR (INDEXBUFFERS and
DATABUFFERS)

Effects

Where useful

Limitations

For files using nonshared resources (NSR), the INDEXBUFFERS and
DATABUFFERS parameters define VSAM index buffers and data buffers
respectively.

INDEXBUFFERS and DATABUFFERS specify the number of index and data buffers
for an NSR file.

The number of buffers can have a significant effect on performance. The use of
many buffers can permit multiple concurrent operations (if there are the
corresponding number of VSAM strings) and efficient sequential operations and CA
splits. Providing extra buffers for high-level index records can reduce physical I/O
operations.

Buffer allocations above the 16MB line represent a significant part of the virtual
storage requirement of most CICS systems.

INDEXBUFFERS and DATABUFFERS have no effect if they are specified for files
using LSR.

The INDEXBUFFERS and DATABUFFERS parameters should be used in CICS
systems that use VSAM NSR files in CICS file control.

These parameters can be overridden by VSAM if they are insufficient for the strings
specified for the VSAM data set. The maximum specification is 255. A specification
greater than this will automatically be reduced to 255. Overriding of VSAM strings
and buffers should never be done by specifying the AMP= attribute on the DD
statement.

Recommendations

See ['VSAM tuning: general objectives” on page 271

How implemented

The INDEXBUFFERS and DATABUFFERS parameters are defined in the file
definition on the CSD. They correspond exactly to VSAM ACB parameters:
INDEXBUFFERS is the number of index buffers, DATABUFFERS is the number of
data buffers.

For LSR files, they are ignored.

How monitored

The effects of these parameters can be monitored through transaction response
times and data set and paging 1/O rates. The CICS file statistics show data set
activity to VSAM data sets. The VSAM catalog and RMF can show data set activity,
I/O contention, space usage, and ClI size.

Chapter 19. VSAM and file control: improving performance 281

Defining VSAM buffer allocations for LSR

For files using local shared resources (LSR), the number of buffers to be used is
not specified explicitly by file. The files share the buffers of the appropriate sizes in
the LSR pool. The number of buffers in the pool may either be specified explicitly
using the BUFFERS parameter in the file definition on the CSD, or be left to CICS
to calculate. For more information about the CSD, see the CICS Resource]
IDefinition Guide,

Effects

The BUFFERS parameter allows for exact definition of specific buffers for the LSR
pool.

The number of buffers can have a significant effect on performance. The use of
many buffers can permit multiple concurrent operations (if there are the
corresponding number of VSAM strings). It can also increase the chance of
successful buffer lookaside with the resulting reduction in physical I/O operations.

The number of buffers should achieve an optimum between increasing the 1/0
saving due to lookaside and increasing the real storage requirement. This optimum
is different for buffers used for indexes and buffers used for data. Note that the
optimum buffer allocation for LSR is likely to be significantly less than the buffer
allocation for the same files using NSR.

Where useful

The BUFFERS parameter should be used in CICS systems that use VSAM LSR
files in CICS file control.

Recommendations
See ['VSAM tuning: general objectives” on page 271.|

How implemented

The BUFFERS parameter is defined in the file definition on the CSD. For more
information about the CSD, see [the CICS Resource Definition Guide,

How monitored

The effects of these parameters can be monitored through transaction response
times and data set and paging I/O rates. The effectiveness affects both file and
Isrpool statistics. The CICS file statistics show data set activity to VSAM data sets.
The VSAM catalog and RMF can show data set activity, /0O contention, space
usage, and Cl size.

Defining VSAM string settings for NSR (STRINGS)

STRINGS is used to determine the number of concurrent operations possible
against the file and against the VSAM base cluster to which the file relates.

Effects

The STRINGS parameter for files using NSR has the following effects:

It specifies the number of concurrent asynchronous requests that can be made
against that specific file.

e |t is used as the STRINGS in the VSAM ACB.

282 CICS TS for z/0S: CICS Performance Guide

» It is used, in conjunction with the BASE parameter, to calculate the VSAM
BSTRNO.

* A number greater than 1 can adversely affect performance for ESDS files used
exclusively in write mode. With a string number greater than 1, the cost of
invalidating the buffers for each of the strings is greater than waiting for the
string, and there can be a significant increase in the number of VSAM EXCP
requests.

Strings represent a significant part of the virtual storage requirement of most CICS
systems. With CICS, this storage is above the 16MB line.

Where useful

The STRINGS parameter should be used in CICS systems that use VSAM NSR
files in CICS file control.

Limitations
A maximum of 255 strings can be used as the STRNO or BSTRNO in the ACB.

Recommendations

See ['Number of strings considerations for ESDS files” on page 275 and[VSAM|
ftuning: general objectives” on page 271

How implemented
The number of strings is defined by the STRINGS parameter in the CICS file
definition on the CSD. It corresponds to the VSAM parameter in the ACB except
where a base file is opened as the first for a VSAM data set; in this case, the
CICS-accumulated BSTRNO value is used as the STRNO for the ACB.

How monitored

The effects of the STRINGS parameter can be seen in increased response times
and monitored by the string queueing statistics for each file definition. RMF can
show I/O contention in the DASD subsystem.

Defining VSAM string settings for LSR (STRINGS)

STRINGS is used to determine the number of strings and thereby the number of
concurrent operations possible against the LSR pool (assuming that there are
buffers available).

Effects
The STRINGS parameter relating to files using LSR has the following effects:
* |t specifies the number of concurrent requests that can be made against that
specific file.
+ It is used by CICS to calculate the number of strings and buffers for the LSR
pool.
* |tis used as the STRINGS for the VSAM LSR pool.

* It is used by CICS to limit requests to the pools to prevent a VSAM
short-on-strings condition (note that CICS calculates the number of strings
required per request).

* A number greater than 1 can adversely affect performance for ESDS files used
exclusively in write mode. With a string number greater than 1, the cost of

Chapter 19. VSAM and file control: improving performance 283

resolving exclusive control conflicts is greater than waiting for a string. Each time
exclusive control is returned, a GETMAIN is issued for a message area, followed
by a second call to VSAM to obtain the owner of the control interval.

Where useful
The STRINGS parameter can be used in CICS systems with VSAM data sets.

Limitations
A maximum of 255 strings is allowed per pool.

Recommendations

See ['Number of strings considerations for ESDS files” on page 275| and [*VSAM|
|tuning: general objectives” on page 271

How implemented

The number of strings is defined by the STRNO parameter in the file definition on
the CSD, which limits the concurrent activity for that particular file.

How monitored

The effects of the STRINGS parameter can be seen in increased response times
for each file entry. The CICS LSRPOOL statistics give information on the number of
data set accesses and the highest number of requests for a string.

Examination of the string numbers in the CICS statistics shows that there is a
two-level check on string numbers available: one at the data set level (see
control statistics” on page 470), and one at the shared resource pool level (see
‘LSRpool statistics” on page 517).

RMF can show I/O contention in the DASD subsystem.

Specifying maximum keylength for LSR (KEYLENGTH and
MAXKEYLENGTH)

The KEYLENGTH parameter in the file definition in the CSD, or the
MAXKEYLENGTH in the LSR pool definition specifies the size of the largest key to
be used in an LSR pool.

The maximum keylength may be specified explicitly using the KEYLENGTH
parameter in the file definition on the CSD, or it may be left to CICS to determine
from the VSAM catalog. For more information about the CSD, see [the CICY
|Resource Definition Guide,

Effects

The KEYLENGTH parameter causes the “placeholder” control blocks to be built with
space for the largest key that can be used with the LSR pool. If the KEYLENGTH
specified is too small, it prevents requests for files that have a longer key length.

Where useful
The KEYLENGTH parameter can be used in CICS systems with VSAM data sets.

284 CICS TS for z/0S: CICS Performance Guide

Recommendations
See ['VSAM tuning: general objectives” on page 271

The key length should always be as large as, or larger than, the largest key for files
using the LSR pool.

How implemented

The size of the maximum keylength is defined in the KEYLEN parameter in the file
definition on the CSD. For more information about the CSD, see [the CIC
|Resource Definition Guide,

Specifying resource percentile for LSR (SHARELIMIT)

The SHARELIMIT parameter in the LSR pool definition specifies the percentage of
the buffers and strings that CICS should apply to the value that it calculates.

Effects

The method used by CICS to calculate LSR pool parameters and the use of the
SHARELIMIT value is described in ['VSAM tuning: general objectives” on page 271 |

This parameter has no effect if both the BUFFERS and the STRINGS parameters
are specified for the pool.

Where useful
The SHARELIMIT parameter can be used in CICS systems with VSAM data sets.

Recommendations
See ['VSAM tuning: general objectives” on page 271.|

Because SHARELIMIT can be applied only to files that are allocated at initialization
of the LSR pool (when the first file in the pool is opened), it is always wise to
specify the decimal STRINGS and BUFFERS for an LSR pool.

How implemented

The SHARELIMIT parameter is specified in the LSR pool definition. For more
information, see[the CICS Resource Definition Guide.

Using VSAM local shared resources (LSR)

Effects

CICS always builds a control block for LSR pool 1. CICS builds control blocks for
other pools if either a LSR pool definition is installed, or a file definition at CICS
initialization time has LSRPOOL= defined with the number of the pool.

Where useful
VSAM local shared resources can be used in CICS systems that use VSAM.

Recommendations
See ['VSAM tuning: general objectives” on page 271

Chapter 19. VSAM and file control: improving performance 285

How implemented

CICS uses the parameters provided in the LSR pool definition to build the LSR
pool.

How monitored

VSAM LSR can be monitored by means of response times, paging rates, and CICS
LSRPOOL statistics. The CICS LSRPOOL statistics show string usage, data set
activity, and buffer lookasides (see |“LSRpooI statistics” on page 517).

Using Hiperspace buffers

VSAM Hiperspace buffers reside in MVS expanded storage. These buffers are
backed only by expanded storage. If the system determines that a particular page
of this expanded storage is to be used for another purpose, the current page’s
contents are discarded rather than paged-out. If VSAM subsequently requires this
page, it retrieves the data from DASD. VSAM manages the transfer of data
between its Hiperspace buffers and its CICS address space buffers. CICS file
control can only work with VSAM data when it is in a CICS address space buffer.
Data is transferred between Hiperspace buffers and address space buffers in blocks
of pages using CREAD and CWRITE commands. See [‘{LSRpool: Hiperspace data|
buffer statistics” on page 521|for more information.

Effects
The use of a very large number of Hiperspace buffers can reduce both physical 1/0
and pathlength when accessing your CICS files because the chance of finding the
required records already in storage is relatively high.

Limitations
Because the amount of expanded storage is limited, it is possible that the
installation will overcommit its use and VSAM may be unable to allocate all of the
Hiperspace buffers requested. MVS may use expanded storage pages for purposes
other than those allocated to VSAM Hiperspace buffers. In this case CICS
continues processing using whatever buffers are available.
If address space buffers are similarly overallocated then the system would have to
page. This overallocation of address space buffers is likely to seriously degrade
CICS performance whereas overallocation of Hiperspace buffers is not.
Hiperspace buffer contents are lost when an address space is swapped out. This
causes increased I/O activity when the address is swapped in again. If you use
Hiperspace buffers, you should consider making the CICS address space
nonswappable.

Recommendations

Keeping data in memory is usually very effective in reducing the CPU costs
provided adequate central and expanded storage is available. Using mostly
Hiperspace rather than all address space buffers can be the most effective option
especially in environments where there are more pressing demands for central
storage than VSAM data.

286 CICS TS for z/0S: CICS Performance Guide

How implemented

CICS never requests Hiperspace buffers as a result of its own resource
calculations. You have to specify the size and number of virtual buffers and
Hiperspace buffers that you need.

You can use the RDO parameters of HSDATA and HSINDEX, which are added to
the LSRPOOL definition to specify Hiperspace buffers. Using this method you can
adjust the balance between Hiperspace buffers and virtual buffers for your system.

For further details of the CEDA transaction, see the CICS Supplied Transactions,

Permitting VSAM subtasking (SUBTSKS=1)

Effects

Where useful

Limitations

The optional concurrent (CO) mode TCB is used for processes which can safely run
in parallel with other CICS activity such as VSAM requests. The SIT keyword
SUBTSKS has been defined to have numeric values (0 and 1) to specify whether
there is to be a CO TCB.

The objective of subtasks is to increase the maximum throughput of a single CICS
system on multiprocessors. However, the intertask communication increases total
processor utilization.

When /O is done on subtasks, any extended response time which would cause the
CICS region to stop, such as CI/CA splitting in NSR pools, causes only the
additional TCB to stop. This may allow more throughput in a region that has very
many CA splits in its file, but has to be assessed cautiously with regard to the extra
overhead associated with using the subtask.

When the SUBTSKS=1 system initialization parameter has been specified:
* All Non-RLS VSAM file control WRITE requests to KSDS are subtasked.
» All other file control requests are never subtasked.

» Auxiliary temporary storage or intrapartition transient data requests are
subtasked.

» Resource security checking requests are subtasked when the CICS main TCB
(quasi-reentrant mode) exceeds approximately 70% activity.

Subtasking can be useful with CICS systems that use VSAM.

Subtasking should only be used in a multiprocessing system in a region that is
limited by a single processor but has spare capacity on other processors in the
MVS image. If used in other circumstances, it can cause throughput degradation
because of the dispatching of multiple tasks.

Subtasking can improve throughput only in multiprocessor MVS images, because
additional processor cycles are required to run the extra subtask. For that reason,
we do not recommend the use of this facility on uniprocessors (UPs). It should be
used only for a region that reaches the maximum capacity of one processor in a
complex that has spare processor capacity or has NSR files that undergo frequent
CI/CA splitting.

Chapter 19. VSAM and file control: improving performance 287

Regions that do not contain significant amounts of VSAM data set activity
(particularly update activity) do not gain from VSAM subtasking.

Application task elapsed time may increase or decrease because of conflict
between subtasking overheads and better use of multiprocessors. Task-related DSA
occupancy increases or decreases proportionately.

Recommendations

SUBTSKS=1 should normally be specified only when the CICS system is run on a
MVS image with two or more processors and the peak processor utilization due to
the CICS main TCB in a region exceeds, say, about 70% of one processor, and a
significant amount of 1/0 activity within the CICS address space is eligible for
subtasking.

In this environment, the capacity of a second processor can be utilized to perform
the 1/0 scheduling activity for VSAM data sets, auxiliary temporary storage, and
intrapartition transient data.

The maximum system throughput of this sort of CICS region can be increased by
using the 1/O subtask, but at the expense of some additional processing for
communication between the subtask and the MVS task under which the transaction
processing is performed. This additional processing is seldom justified unless the
CICS region has reached or is approaching its throughput limit.

A TOR that is largely or exclusively routing transactions to one or more AORs has
very little I/O that is eligible for subtasking. It is not, therefore, a good candidate for
subtasking.

An AOR is a good candidate only if a significant amount of VSAM I/O is performed
within the AOR rather than being function-shipped to an FOR.

Subtasking should be considered for a busy FOR that often has a significant
amount of VSAM I/O (but remember that DL/I processing of VSAM data sets is not
subtasked).

How implemented

The system initialization parameter, SUBTSKS=1, defines that subtasking is to be
used.

How monitored

CICS dispatcher domain statistics include information about the modes of TCB
listed in[‘Dispatcher TCB Modes Report” on page 674

Note: CMF data and CICS trace are fully available.

Using data tables to improve performance

Data tables enable you to build, maintain and have rapid access to data records
contained in tables held in virtual storage above the 16MB line. Therefore, they can
provide a substantial performance benefit by reducing DASD I/O and pathlength
resources. The pathlength to retrieve a record from a data table is significantly
shorter than that to retrieve a record already in a VSAM buffer.

288 CICS TS for z/0S: CICS Performance Guide

Effects

After the initial data table load operation, DASD /O can be eliminated for all
user-maintained and for read-only CICS-maintained data tables.

Reductions in DASD 1/O for CICS-maintained data tables are dependent on the

READ/WRITE ratio. This is a ratio of the number of READs to WRITEs that was
experienced on the source data set, prior to the data table implementation. They
also depend on the data table READ-hit ratio, that is, the number of READs that
are satisfied by the table, compared with the number of requests that go against
the source data set.

CICS file control processor consumption can be reduced by up to 70%. This is
dependent on the file design and activity, and is given here as a general
guideline only. Actual results vary from installation to installation.

For CICS-maintained data tables, CICS ensures the synchronization of source data
set and data table changes. When a file is recoverable, the necessary
synchronization is already effected by the existing record locking. When the file is
nonrecoverable, there is no CICS record locking and the note string position (NSP)
mechanism is used instead for all update requests. This may have a small
performance impact of additional VSAM ENDREQ requests in some instances.

Recommendations

Remember that data tables are defined by two RDO parameters, TABLE and
MAXNUMRECS of the file definition. No other changes are required.

Start off gradually by selecting only one or two candidates. You may want to start
with a CICS-maintained data table because this simplifies recovery
considerations.

Select a CICS-maintained data table with a high READ to WRITE ratio. This
information can be found in the CICS LSRPOOL statistics (see page [517) by
running a VSAM LISTCAT job.

READ INTO is recommended, because READ SET incurs slightly more internal
overhead.

Monitor your real storage consumption. If your system is already real-storage
constrained, having large data tables could increase your page-in rates. This in
turn could adversely affect CICS system performance. Use your normal
performance tools such as RMF to look at real storage and paging rates.

Remember to select files that have a high proportion of full keyed direct reads as
CICS-maintained data table candidates.

Files that have a large proportion of update activity that does not require to be
recovered across a restart would be better suited for user-maintained data tables.

User-maintained data tables can use the global user exit XDTRD to modify as
well as select records. This could allow the user-maintained data table to contain
only the information relevant to the application.

If storage isolation is specified allow for the extra storage needed by the data
tables to prevent CICS incurring increased paging.

How implemented
Data tables can be defined using either the|DEFINE FILE] command of the CEDx
m. See [the C

transaction or the DFHCSDUP utility progra
for more information.

CS Resource Definitior_1|

Chapter 19. VSAM and file control: improving performance 289

How monitored

Performance statistics are gathered to assess the effectiveness of the data table.
They are in addition to those available through the standard CICS file statistics.

The following information is recorded:

* The number of attempts to read from the table

* The number of unsuccessful read attempts

* The number of bytes allocated to the data table

» The number of records loaded into the data table
* The number of attempts to add to the table

* The number of records rejected by a user exit when being added to the table
either during loading or via the API

* The number of attempts to add a record which failed due to the table being full
(already at its maximum number of records)

* The number of attempts to update table records via rewrite requests.
* The number of attempts to delete records from the table

» The highest value which the number of records in the table has reached since it
was last opened.

There are circumstances in which apparent discrepancies in the statistics may be
seen, caused, for example, by the existence of inflight updates.

Using coupling facility data tables to gain performance benefits

For a description of how to define a coupling facility data table (CFDT), and start a
coupling facility data table server, seelthe CICS System Definition Guidel

A CFDT is similar in many ways to a shared user-maintained data table, and the
API used to store and retrieve the data is based on the file control API used for
user-maintained data tables. The data, unlike a UMT, is not kept in a dataspace in
an MVS image and controlled by a CICS region, but kept in a coupling facility list
structure, and control is shared between CFDT server regions. A CICS region
requesting access to a CFDT communicates with a CFDT server region running in
the same MVS image, using the MVS authorised cross-memory (AXM) server
environment. This is the same technique used by CICS temporary storage servers.

CFDTs are particularly useful for informal shared data. Uses could include a
sysplex-wide shared scratchpad, look-up tables of telephone numbers, and creating
a subset of customers from a customer list. Compared with existing methods of
sharing data of this kind, such as shared data tables, shared temporary storage or
RLS files, CFDTs offer some distinct advantages:
 If the data is frequently accessed for modification, CFDT provides superior
performance compared with function-shipped UMT requests, or using an RLS file
* CFDT-held data can be recoverable within a CICS transaction. Recovery of the
structure is not supported, but the CFDT record is recoverable in the event of a
unit of work failure, a CICS region failure, a CFDT server failure, or an MVS
failure (that is, updates made by units of work that were in-flight at the time of the
failure are backed out). Such recoverability is not provided by shared temporary
storage.

There are two models of coupling facility data table, a contention model or locking
model.

290 CICS TS for z/0S: CICS Performance Guide

Using the contention model, an exception condition (CHANGED) notifies an
application that a rewrite following a read for update, or a delete following a read for
update, needs to be retried because the copy of the record in the table has been
updated by another task before the rewrite or delete could be performed. The
contention model does not lock a record, but uses the version number of the table
entry for the record to check that it has not been altered. If the version of this
record on rewrite or delete is not the same as when the original read for update
was performed, the CHANGED condition is returned.

The locking model causes records to be locked following a read for update request
so that multiple updates cannot occur.

A contention model CFDT is non-recoverable. A locking model CFDT may be
recoverable or non-recoverable. For a non-recoverable locking model, CFDT locks
are held until a read for update sequence is completed by a rewrite, a delete or an
unlock, but not until the next syncpoint. Changes are not backed out if a unit of
work fails. In the recoverable case, locks are held until syncpoint, and the CFDT
record is recoverable in the event of a unit of work failure, CICS region failure,
CFDT server failure, or MVS failure.

The relative cost of using update models and recovery is related to the number of
coupling facility accesses needed to support a request. Contention requires the
least number of accesses, but if the data is changed, additional programming and
coupling facility accesses would be needed to handle this condition. Locking
requires more coupling facility accesses, but does mean a request will not need to
be retried, whereas retries can be required when using the contention model.
Recovery also requires further coupling facility accesses, because the recovery data
is kept in the coupling facility list structure.

The following table shows the number of coupling facility accesses needed to
support the CFDT request types by update model.

Table 11. Coupling facility access by request type and update model

Request description Contention Locking Recoverable
Open, Close 3 3 6
Read, Point 1 1 1
Write new record 1 1 2
Read for Update 1 2 2
Unlock 0 1 1
Rewrite 1 1 3
Delete 1 1 2
Delete by key 1 2 3
Syncpoint 0 0 3
Lock WAIT 0 2 2
Lock POST 0 2 2
Cross-system POST 0 2 per waiting 2 per waiting
server server

Locking model

Records held in a coupling facility list structure are marked as locked by updating
the adjunct area associated with the coupling facility list structure element that holds
the data. Locking a record requires an additional coupling facility access to set the
lock, having determined on the first access that the data was not already locked.

291

Chapter 19. VSAM and file control: improving performance

If, however, there is an update conflict, a number of extra coupling facility accesses
are needed, as described in the following sequence of events:

1. The request that hits lock contention is initially rejected.

2. The requester modifies the locked record adjunct area to express an interest in
it. This is a second extra coupling facility access for the lock waiter.

3. The lock owner has its update rejected because the record adjunct area has
been modified, requiring the CICS region to re-read and retry the update. This
results in two extra coupling facility accesses.

4. The lock owner sends a lock release notification message. If the lock was
requested by a different server, this results in a coupling facility access to write
a notification message to the other server and a coupling facility access to read
it on the other side.

Contention model

The contention update model uses the entry version number to keep track of
changes. The entry version number is changed each time the record is updated.
This allows an update request to check that the record has not been altered since
its copy of the record was acquired.

When an update conflict occurs, additional coupling facility accesses are needed:-

» The request that detects that the record has changed is initially rejected and a
CHANGED response is sent.

* The application receiving the response has to decide whether to retry the
request.

Effects

In a test that compared the use of a CFDT with a function-shipped UMT between 2
CICS regions running on different MVS members of a sysplex, it was found that
overall CPU utilization was reduced by over 40% by using CFDTs. Some general
observations that may be useful are:

» Access to CFDT records of 4094 bytes or less (4096 or 4K including 2 bytes of
prefix data) are handled as synchronous coupling facility requests by the CFDT
server. Requests for records of greater then 4K bytes are made asynchronously.
These asynchronous accesses cost a little more in CPU usage and response
time. In a benchmark test comparing the same transaction rates (337 per
second) but different record sizes, the less-than-4K CFDT workload took 41.7%
less CPU than the UMT equivalent. The greater than 4K CFDT workload took
41.1% less CPU with no measurable degradation of response time.

» Using the contention model requires the least coupling facility accesses but
because the CHANGED condition needs to be handled and may need to be
retried, maximum benefit is derived when there are few CHANGED conditions.
These occurrences are reported in the CICS statistics which follow.

» |f the CFDT records are 63 bytes or less in length, the record data is stored in
the entry adjunct area of the coupling facility list structure, which gives improved
performance when using the contention update mode.

+ Using the locking model with recovery is the most costly mode of CFDT
operation. Not only does this require more coupling facility accesses, but the
CFDT server is also acting as a resource manager, co-ordinating the committal of
updates in conjunction with the requesting CICS region. In a benchmark test
involving the READ/UPDATE and REWRITE of CFDT records at a transaction
rate of 168 per second, there was no significant difference in CPU utilization

292 CICS TS for z/0S: CICS Performance Guide

between transactions using contention and locking CFDTs. However, if the CFDT
was defined as recoverable, the CPU utilization of the same transactions
increased by approximately 15%.

Recommendations

Choose an appropriate use of a CFDT. For example, for cross-system, recoverable
scratchpad storage, where shared TS does not give the required functionality, or
VSAM RLS incurs too much overhead.

A large file requires a large amount of coupling facility storage to contain it. Smaller
files are better CFDT candidates (unless your application is written to control the
number of records held in a CFDT).

The additional cost of using a locking model compared with a contention model is
not great. Considering that using the contention model may need application
changes if you are using an existing program, locking is probably the best choice of
update model for your CFDT. If coupling facility accesses are critical to you, they
are minimized by the contention model.

Recovery costs slightly more in CPU usage and in coupling facility utilisation.

Allow for expansion when sizing the CFDT. The amount of coupling facility storage
a structure occupies can be increased dynamically up to the maximum defined in
the associated coupling facility resource management (CFRM) policy with a
SETXCF ALTER command. The MAXTABLES value defined to the CFDT server
should allow for expansion. Therefore, consider setting it to a value higher than
your initial requirements. If a CFDT does become full, its capacity can be increased
using the CFDT operator command SET TABLE=name ,MAXRECS=n.

The utilization of the CFDT should be regularly monitored both through CICS and
CFDT statistics and RMF. Check that the size of the structure is reasonable for the
amount of data it contains. A maximum-used of 80% is a reasonable target.
Defining a maximum coupling facility list structure size in the CFRM policy definition
to be greater than the initial allocation size specified by the POOLSIZE parameter in
the CFDT server startup parameters enables you to enlarge the structure
dynamically with a SETXCF ALTER command if the structure does fill in
extraordinary circumstances.

Ensure that the AXMPGANY storage pool is large enough. This can be increased
by increasing the REGION size for the CFDT server. Insufficient AXMPGANY
storage may lead to 80A abends in the CFDT server.

How implemented

A CFDT is defined to a CICS region using a FILE definition with the following
parameters:

« TABLE(CF)

« MAXNUMRECS(NOLIMITInumber(1 through 99999999))

* CFDTPOOL(pool_name)

» TABLENAME(name)

* UPDATEMODEL(CONTENTIONILOCKING)

* LOAD(NOIYES)

MAXNUMRECS specifies the maximum number of records that that CFDT can
hold.

Chapter 19. VSAM and file control: improving performance 293

The first CICS region to open the CFDT determines the attributes for the file. Once
opened successfully, these attributes remain associated with the CFDT through the
data in the coupling facility list structure. Unless this table or coupling facility list
structure is deleted or altered by a CFDT server operator command, the attributes
persist even after CICS and CFDT server restarts. Other CICS regions attempting
to open the CFDT must have a consistent definition of the CFDT, for example using
the same update model.

The CFDT server controls the coupling facility list structure and the data tables held
in this structure. The parameters documented in the CICS System Definition Guide,
describe how initial structure size, structure element size, and entry-to-element ratio
can be specified.

How monitored

Both CICS and the CFDT server produce statistics records. These are described in
|Appendix C, “Coupling facility data tables server statistics,” on page 647.|

The CICS file statistics report the various requests by type issued against each
CFDT. They also report if the CFDT becomes full, the highest number of records
held and a Changed Response/Lock Wait count. This last item can be used to
determine for a contention CFDT how many times the CHANGED condition was
returned. For a locking CFDT this count reports how many times requests were
made to wait because the requested record was already locked.

CFDT statistics

The CFDT server reports comprehensive statistics on both the coupling facility list
structure it uses and the data tables it supports. It also reports on the storage used
within the CFDT region by the AXM routines executed (the AXMPGLOW and
AXMPGANY areas). This data can be written to SMF and may also be produced
automatically at regular intervals or by operator command to the joblog of the CFDT
server.

The following is an example of coupling facility statistics produced by a CFDT
server:

DFHCF0432I Table pool statistics for coupling facility 1ist structure DFH
CFLS_PERFCFT2:

Structure: Size Max size Elem size Tables: Current Highest
12288K 30208K 256 4 4
Lists: Total In use Max used Control Data
137 41 41 37 4
100% 30% 30% 27% 3%
Entries: Total In use Max used Free Min free Reserve
3837 2010 2010 1827 1827 191
100% 52% 52% 48% 48% 5%
ETements: Total In use Max used Free Min free Reserve
38691 12434 12434 26257 26257 1934
100% 32% 32% 68% 68% 5%

This above example shows the amount of space currently used in a coupling facility
list structure (Size) and the maximum size (Max size) defined for the structure. The
structure size can be increased by using a SETXCF ALTER command. The number
of lists defined is determined by the MAXTABLES parameter for the CFDT server.
In this example, the structure can support up to 100 data tables (and 37 lists for
control information).

294 CICS TS for z/0S: CICS Performance Guide

RMF reports

Each list entry comprises a fixed length section for entry controls and a variable
number of data elements. The size of these elements is fixed when the structure is
first allocated in the coupling facility, and is specified to the CFDT server by the
ELEMSIZE parameter. The allocation of coupling facility space between entry
controls and elements will be altered automatically and dynamically by the CFDT
server to improve space utilization if necessary.

The reserve space is used to ensure that rewrites and server internal operations
can still function if a structure fills with user data.

The amount of storage used with the CFDT region to support AXM requests is also
reported. For example:-

AXMPGOOO4I Usage statistics for storage page pool AXMPGANY:

Size In Use Max Used Free Min Free
30852K 636K 672K 30216K 30180K
100% 2% 2% 98% 98%
Gets Frees Retries Fails
3122 3098 0 0

AXMPGOOO4I Usage statistics for storage page pool AXMPGLOW:
Size In Use Max Used Free Min Free
440K 12K 12K 428K 428K
100% 3% 3% 97% 97%
Gets Frees Retries Fails
3 0 0 0

The CFDT server uses storage in its own region for AXMPGANY and AXMPGLOW
storage pools. AXMPGANY accounts for most of the available storage above 16MB
in the CFDT region. The AXMPGLOW refers to 24-bit-addressed storage (below
16MB) and accounts for only 5% of this storage in the CFDT region. The CFDT
server has a small requirement for such storage.

In addition to the statistics produced by CICS and the CFDT server, you can
monitor the performance and use of the coupling facility list structure using the
Resource Measurement Facility (RMF) facilities available on z/OS. A ‘Coupling
Facility Activity’ report can be used to review the use of a coupling facility list
structure. For example, this section of the report shows the DFHFCLS_PERFCFT2
structure size (12M), how much of the coupling facility is occupied (0.6%), some
information on the requests handled, and how this structure has allocated and used
the entries and data elements within this particular list structure. The headings are
‘Type', 'Structure name', 'Status chg', 'Alloc size', '% of CF storage', '# req’, '% of all
req', 'Avg reg/sec', 'Lst/dir entries tot/cur’, 'Data elements tot/cur', 'Lock entries
tot/cur'and 'Dir rec/ Dir rec XI's'.
% OF % OF AVG LST/DIR DATA LOCK DIR REC/

STRUCTURE ALLOC CF # ALL REQ/ ENTRIES ELEMENTS ENTRIES DIR REC

TYPE NAME STATUS CHG SIZE STORAGE REQ REQ SEC TOT/CUR TOT/CUR TOT/CUR XI'S

LIST DFHCFLS_PERFCFT2 ACTIVE 12M 0.6% 43530 93.2% 169.38 3837 39K N/A N/A
1508 11K N/A N/A

RMF will also report on the activity (performance) of each structure. The example
report below shows the system name, the total number of requests and the average
requests per second. For requests, it gives the number of each type of request, the
percentage of all requests that this number represents, the average service time
and the standard deviation. For delayed requests, it gives the number of requests
delayed for each reason, the percentage of all requests that this number
represents, the average delay time and the standard deviation for each type of
delay, and the average delay time for all delayed requests.

Chapter 19. VSAM and file control: improving performance 295

STRUCTURE NAME = DFHCFLS_PERFCFT2 TYPE = LIST

-------------- REQUESTS -------=--=oo ----o--eo---o- DELAYED REQUESTS -------c-nen--
SYSTEM TOTAL # % OF -SERV TIME(MIC)- REASON # % OF ---- AVG TIME(MIC) -----
NAME AVG/SEC REQ ALL AVG STD_DEV REQ REQ /DEL STD_DEV /ALL
MV2A 43530 SYNC 21K 49.3% 130.2 39.1

169.4 ASYNC 22K 50.7% 632.7 377.7 NO SCH 0 0.0% 0.0 0.0 0.0
CHNGD 0 0.0% INCLUDED IN ASYNC
DUMP 0 0.0% 0.0 0.0

This report shows how many requests were processed for the structure
DFHFCLS_PERFCFT2 and average service times (response times) for the two
categories of requests, synchronous and asynchronous. Be aware that requests of
greater then 4K are handled asynchronously. For an asynchronous request, the
CICS region can continue to execute other work and is informed when the request
completes. CICS waits for a synchronous request to complete, but these are
generally very short periods. The example above shows an average service time of
130.2 microseconds (millionths of a second). CICS monitoring records show delay
time for a transaction due waiting for a CFDT response. In the example above, a
mixed workload of small and large files was used. You can see from the SERV
TIME values that, on average, the ASYNC requests took nearly 5 times longer to
process and that there was a wide variation in service times for these requests. The
STD_DEYV value for SYNC requests is much smaller.

Performance aspects of VSAM record-level sharing (RLS)

VSAM record-level sharing (RLS) is a VSAM data set access mode, introduced in
DFSMS Version 1 Release 3, and supported by CICS. RLS enables VSAM data to
be shared, with full update capability, between many applications running in many
CICS regions. With RLS, CICS regions that share VSAM data sets can reside in
one or more MVS images within an MVS parallel sysplex.

RLS also provides some benefits when data sets are being shared between CICS
regions and batch jobs.

RLS involves the use of the following components:

* A VSAM server, subsystem SMSVSAM, which runs in its own address space to
provide the RLS support required by CICS application owning regions (AORs),
and batch jobs, within each MVS image in a Parallel Sysplex® environment.

The CICS interface with SMSVSAM is through an access control block (ACB),
and CICS registers with this ACB to open the connection. Unlike the DB2 and
DBCTL database manager subsystems, which require user action to open the
connections, if you specify RLS=YES as a system initialization parameter, CICS
registers with the SMSVSAM control ACB automatically during CICS initialization.

A CICS region must open the control ACB to register with SMSVSAM before it
can open any file ACBs in RLS mode. Normal file ACBs remain the interface for
file access requests.

» Sharing control data sets. VSAM requires a number of these for RLS control.
The VSAM sharing control data sets are logically-partitioned, linear data sets.
They can be defined with secondary extents, but all the extents for each data set
must be on the same volume.

Define at least three sharing control data sets, for use as follows:
— VSAM requires two active data sets for use in duplexing mode

— VSAM requires the third data set as a spare in case one of the active data
sets fails.

See the [z/0S: DFSMSdfp Storage Administration Referencd for more information
about sharing control data sets, and for a JCL example for defining them.

296 CICS TS for z/0S: CICS Performance Guide

« Common buffer pools and control blocks. For data sets accessed in non-RLS
mode, VSAM control blocks and buffers (local shared resources (LSR) pools) are
located in each CICS address space and are thus not available to batch
programs, and not even to another CICS region.

With RLS, all the control blocks and buffers are allocated in an associated data
space of the SMSVSAM server. This provides one extremely large buffer pool for
each MVS image, which can be shared by all CICS regions connected to the
SMSVSAM server, and also by batch programs. Buffers in this data space are
created and freed automatically.

DFSMS provides the RLS_MAX_POOL_SIZE parameter that you can specify in
the IGDSMSxx SYS1.PARMLIB member. There are no other tuning parameters
for RLS as there are with LSR pools—management of the RLS buffers is fully
automatic.

Using RLS with entry-sequenced data sets (ESDS) can have a negative effect on
the performance and availability of the data set when you are adding records. The
following issues have been identified:

* When new records are added to the end of an ESDS in RLS access mode, the
acquisition of locks on the various calls required to VSAM to satisfy the request
might cause long response times for the operation.

+ If a CICS region fails while writing to an ESDS, the data set might be locked until
the CICS region is restarted.

For these reasons, it is recommended that you do not use RLS with
entry-sequenced data sets.

Effects

The tests and measurements described in this section were carried out using RLS
with key-sequenced data sets (KSDS). As described above, RLS is not
recommended for use with entry-sequenced data sets (ESDS), as it can cause
problems with performance and availability when you are adding records.

There is an increase in CPU costs when using RLS compared with
function-shipping to an FOR using MRO. When measuring CPU usage using the
standard DSW workload, the following comparisons were noted:

» Switching from local file access to function-shipping across MRO cross-memory
(XM) connections incurred an increase of 7.02 ms per transaction in a single
CPC.

» Switching from MRO XM to RLS incurred an increase of 8.20ms per transaction
in a single CPC.

» Switching from XCF/MRO to RLS using two CPCs produced a reduction of
2.39ms per transaction.

» Switching from RLS using one CPC to RLS using two CPCs there was no
appreciable difference.

In terms of response times, the performance measurements showed that:

* Function-shipping with MRO XM is better than RLS, but this restricts
function-shipping to within one MVS image, and prevents full exploitation of a
Parallel Sysplex with multiple MVS images or multiple CPCs.

* RLS is better than function-shipping with XCF/MRO, when the FOR is running in
a different MVS image from the AOR.

Chapter 19. VSAM and file control: improving performance 297

However, performance measurements on their own do not tell the whole story, and
do not take account of other factors, such as:

* As more and more applications need to share the same VSAM data, the load
increases on the single file-owning region (FOR) to a point where the FOR can
become a throughput bottleneck. The FOR is restricted, because of the CICS
internal architecture, to the use of a single TCB for user tasks, which means that
a CICS region generally does not exploit multiple CPs

» Session management becomes more difficult as more and more AORs connect
to to the FOR.

These negative aspects of using an FOR are resolved by using RLS, which
provides the scalability lacking in a FOR.

How implemented
To use RLS access mode with CICS files:
1. Define the required sharing control data sets

2. Specify the RLS_MAX_POOL_SIZE parameter in the IGDSMSxx
SYS1.PARMLIB member.

3. Ensure the SMSVSAM server is started in the MVS image in which you want
RLS support.

4. Specify the system initialization parameter RLS=YES. This enables CICS to
register automatically with the SMSVSAM server by opening the control ACB
during CICS initialization. RLS support cannot be enabled dynamically later if
you start CICS with RLS=NO.

5. Ensure that the data sets you plan to use in RLS-access mode are defined,
using Access Method Services (AMS), with the required recovery attributes
using the LOG and LOGSTREAMID parameters on the IDCAMS DEFINE
statements. If you are going to use an existing data set that was defined without
these attributes, redefine the data set with them specified.

6. Specify RLSACCESS(YES) on the file resource definition.

This chapter has covered the three different modes that CICS can use to access a
VSAM file. These are non-shared resources (NSR) mode, local shared resources
(LSR) mode, and record-level sharing (RLS) mode. (CICS does not support VSAM
global shared resources (GSR) access mode.) The mode of access is not a
property of the data set itself—it is a property of the way that the data set is
opened. This means that a given data set can be opened by a user in NSR mode
at one time, and RLS mode at another. The term non-RLS mode is used as a
generic term to refer to the NSR or LSR access modes supported by CICS.
Mixed-mode operation means a data set that is opened in RLS mode and a
non-RLS mode concurrently, by different users.

Although data sets can be open in different modes at different times, all the data
sets within a VSAM sphere must normally be opened in the same mode. (A sphere
is the collection of all the components—the base, index, any alternate indexes and
alternate index paths—associated with a given VSAM base data set.) However,
VSAM does permit mixed-mode operations on a sphere by different applications,
subject to some CICS restrictions.

How monitored

Using RLS-access mode for VSAM files involves SMSVSAM as well as the CICS
region issuing the file control requests. This means monitoring the performance of

298 CICS TS for z/0S: CICS Performance Guide

both CICS and SMSVSAM to get the full picture, using a combination of CICS
performance monitoring data and SMF Type 42 records written by SMSVSAM:

CICS monitoring
For RLS access, CICS writes performance class records to SMF containing:

* RLS CPU time on the SMSVSAM SRB
* RLS wait time.

SMSVSAM SMF data
SMSVSAM writes Type 42 records, subtypes 15, 16, 17, 18, and 19,
providing information about coupling facility cache sets, structures, locking
statistics, CPU usage, and so on. This information can be analyzed using
RMF 1l post processing reports.

The following is an example of the JCL that you can use to obtain a report of
SMSVSAM data:

//RMFCF JOB (accounting_information) ,MSGCLASS=A,MSGLEVEL=(1,1),CLASS=A
//STEP1 EXEC PGM=IFASMFDP
//DUMPIN DD DSN=SYS1.MV2A.MANA,DISP=SHR
//DUMPOUT DD DSN=&&SMF,UNIT=SYSDA,
/] DISP=(NEW,PASS),SPACE=(CYL, (10,10))
//SYSPRINT DD SYSOUT=+
//SYSIN DD =
INDD (DUMPIN,OPTIONS (DUMP))
OUTDD (DUMPOUT, TYPE=000:255))
//POST EXEC PGM=ERBRMFPP,REGION=0M
//MFPINPUT DD DSN=&&SMF,DISP=(OLD,PASS)
//SYSUDUMP DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//MFPMSGDS DD SYSOUT=A
//SYSIN DD *
NOSUMMARY
SYSRPTS (CF)
SYSOUT(A)
REPORTS (XCF)
/*

CICS file control statistics contain the usual information about the numbers of file
control requests issued in the CICS region. They also identify which files are
accessed in RLS mode, and provide counts of RLS timeouts and EXCP counts for
RLS files. They do not contain any information about the SMSVSAM server, or its
buffer usage, or its accesses to the coupling facility.

Chapter 19. VSAM and file control: improving performance 299

300 CICS TS for z/0S: CICS Performance Guide

Chapter 20. Java applications using a Java virtual machine
(JVM): improving performance

This chapter describes CICS performance considerations for Java programs that
require a Java Virtual Machine (JVM) in which to execute.

Java application programs can run under CICS control in Java Virtual Machines
(JVMs) that are initialized by CICS and run within the CICS region address space.
When a Java program executes in a JVM, the JVM interprets the Java bytecode.
The type of JVM supported by CICS is the JVM that is provided by the IBM
Software Developer Kit for z/OS, Java 2 Technology Edition, Version 1.4.2 at or
later, which features the persistent reusable JVM technology. This JVM can be
reused many times by Java applications in CICS, avoiding the high startup
overheads that are typical for a single-use JVM.

"About JVMs" in Java Applications in CICY explains:
* The type of JVM that is supported by each release of CICS.

* The structure of JVMs, including the types of classes contained in a JVM, and
the different storage heaps in a JVM.

* How CICS creates JVMs and manages the JVM pool in which they reside,
including: how CICS obtains information from the PROGRAM resource definition
to create a JVM that is suitable for a Java program; how JVMs run on J8-mode
open TCBs (for JVMs in CICS key) or J9-mode open TCBs (for JVMs in user
key), in the open transaction environment (OTE); and how the MAXJVMTCBS
limit controls the number of JVMs in the JVM pool.

* How CICS assigns JVMs to applications that request them, including the
mechanism that CICS uses to control mismatches and steals in the JVM pool.

* The three levels of reusability for JVMs—resettable JVMs, continuous JVMs, and
single-use JVMs—and the performance implications of each level of reusability.

* How the shared class cache works. The shared class cache enables the JVMs in
the CICS region to share commonly-used class files and compiled classes, which
would otherwise be stored in the system heap for each individual JVM.

Before attempting performance tuning for your JVMs, you should read this
information to help you understand how CICS deals with JVMs.

['Managing your JVMs" in Java Applications in CICS tells you how to perform basic
management tasks for the JVMs in your CICS region, including:

* Monitoring the JVMs and collecting statistics.
» Terminating or disabling the JVM pool.

* Redirecting the output from JVMs.

» Controlling JVM tracing.

You can also take the following action to tune the JVM pool and your JVMs:
« [“Tuning storage for individual JVMs” on page 302

« [Tuning Language Environment enclave storage for JVMs” on page 310
[Tuning the z/OS shared library region” on page 313|

+ [‘Managing your JVM pool for performance” on page 314

. “‘Tuning for enterprise beans” on page 326|

© Copyright IBM Corp. 1983, 2011 301

Tuning storage for individual JVMs

A JVM manages run-time storage in several segregated heaps. Objects are
grouped in these heaps according to their expected lifetime. [Java Applications in
explains the structure and content of these storage heaps.

JVMs are able to exploit the grouping of objects by using heap-specific garbage
collection (the process of cleaning up unreferenced objects that are no longer in
use), as follows:

System heap
Might contain system class objects that persist for the lifetime of the JVM. JVMs
never perform garbage collection on this heap. Worker JVMs (those with
CLASSCACHE=YES in their JVM profile) do not have a system heap, because
they use the master JVM's system heap.

Application-class system heap
Contains class objects representing shareable application classes, which persist
for the lifetime of the JVM and are reinitialized if the JVM is reset. JVMs never
perform garbage collection on this heap. Worker JVMs (those with
CLASSCACHE=YES in their JVM profile) do not have an application-class
system heap, because they use the master JVM's system heap. Continuous
and single-use JVMs (those with REUSE=YES, REUSE=NO or Xresettable=N0O
in their JVM profile) do not have an application-class system heap, because
these types of JVM are not reset after use.

Nonsystem heap
Comprises two other heaps of variable size:

Middleware heap
Contains objects whose lifetime is greater than a single transaction. JVMs
perform garbage collection on this heap. All types of JVM have a
middleware heap.

Transient heap
Contains objects whose lifetime is the same as the transaction using it. The
segregation of this heap from the middleware heap improves the
performance of garbage collection. JVMs can perform garbage collection on
this heap if it runs out of space in the nonsystem heap. It is also completely
deleted if the JVM is reset. Continuous and single-use JVMs (those with
REUSE=YES, REUSE=NO or Xresettable=N0 in their JVM profile) do not
have a transient heap, because these types of JVM are not reset after use.
For these types of JVM, the middleware heap is used for items that would
normally be contained in the transient heap. The master JVM that initializes
the shared class cache also has no transient heap, because it cannot be
used to run applications.

The initial sizes for the storage heaps in a JVM are defined by options in its JVM
profile. All of the heaps can expand within the storage available to them. The
maximum sizes of the system heap and the application-class system heap are only
restricted by the storage available in the Language Environment enclave for the
JVM. The maximum sizes of the middleware heap and the transient heap are
restricted by the maximum size set for the nonsystem heap, which is specified in
the JVM profile (using the Xmx option). Specifying the maximum size for the
nonsystem heap means that you are specifying a maximum total size for the
middleware and transient heaps. Remember that continuous and single-use JVMs
do not have a transient heap, because these types of JVM are not reset after each

302 CICS TS for 2/0S: CICS Performance Guide

use. For these types of JVM, the nonsystem heap consists only of the middleware
heap, and therefore the Xmx option only limits the maximum size of the middleware
heap.

You specify JVM heap sizes with the following options in a JVM profile:

Table 12. JVM profile options for heap sizes

Option in | Description JVM default |Value set by |JVM types
the JVM value for CICS-
profile z/0S supplied
sample JVM
profiles
Xinitacsh |Initial application class system | 128 KB Not specified | Not for
heap size worker,
continuous,
single-use
Xinitsh Initial system heap size 128 KB Not specified | Not for worker
Xinitth Initial transient heap size 500 KB Not specified | Not for
(see note) master,
continuous,
single-use
Xms Initial middleware heap size 500 KB 16 MB All types
(master 1
MB)
Xmx Maximum total size for the 64 MB 32 MB All types
transient + middleware heaps (master 4
(nonsystem heap) MB)
Note: If Xinitth is not specified and Xms is specified, then Xinitth is set to half of Xms. In
the CICS-supplied JVM profile DFHJVMPR, the value of Xms is 16 MB, therefore Xinitth is
set to 8MB.

In Java Applications in CICS, |“Setting up JVM profiles and JVM properties files’]
tells you how to set up a JVM profile, and [‘Customizing and creating JVM profileg]
land JVM properties files”|tells you how to customize the options in it. You can
modify the storage-related options in a JVM profile without restarting CICS. To
implement the new version of the JVM profile, use the CEMT SET JVMPOOL
TERMINATE command to shut down and restart the JVMs in the JVM pool.

Tuning JVM storage options can reduce the storage required for each JVM, and
also eliminate unnecessary CPU time spent expanding heaps and running garbage
collection. In most cases, one requirement must be balanced against another. For
example, a large setting for the nonsystem heap reduces the frequency of garbage
collections, but also reduces the number of JVMs that CICS can have in its address
space.

All heap storage requirements depend on:
» The complexity of the Java applications that run in the JVM.
* Whether or not the JVM uses the shared class cache. Worker JVMs require less

storage than standalone JVMs, but bear in mind that you will need to set aside
storage in each region for the shared class cache itself.

* The level of reusability for the JVM. If you are using continuous JVMs, bear in
mind that the storage heaps in these JVMs are not automatically cleaned up after
each program invocation. Because of this, depending on the application design
and the extent to which each program cleans up after itself, compared to a

Chapter 20. Java applications using a Java virtual machine (JVM): improving performance 303

resettable standalone JVM running the same workload, the continuous JVM
might require either larger storage heap sizes or more frequent garbage
collection.

You can use the CICS statistics to get an indication of a suitable value for the Xmx
option. The field “Peak Nonsystem heap storage used” in the JVM Profile statistics
shows the peak (or high water mark) amount of storage that was actually used by a
JVM with the specified execution key and profile. As a first step for tuning, you
could set the value of Xmx to this figure, rounded up to a 1MB boundary. To increase
the accuracy of the result, you should purge any JVMs with the profile that you are
tuning, around the time of a statistics reset (either before or immediately
afterwards). This ensures that the statistics collected in the next statistics interval
are a more accurate reflection of the storage usage for those JVMs.

For more accurate tuning for your JVMs, including suitable values for the transient
heap size and the system heap size, you should use the output from garbage
collection. The guidelines and tuning method given in [‘Using the output from
lgarbage collection to tune storage for JVMs”|are generally suitable for all types of
JVM.

Using the output from garbage collection to tune storage for JVMs

The IBM Developer Kit and Runtime Environment, Java 2 Technology Edition,
Version 1.4.2 Diagnostics Guide, SC34-6358, has a detailed explanation of the
JVM's garbage collection process. This document is available to download from
www.ibm.com/developerworks/java/jdk/diagnosis/

For CICS Transaction Server for z/OS, Version 3 Release 1, a full garbage
collection is automatically requested by CICS for each JVM after every 101st
transaction. In between these automatic garbage collections, if a JVM runs out of
space in one of its storage heaps and is unable to allocate any more objects (an
allocation failure), the Garbage Collector tries to expand the storage heap. If there
is not enough free storage available to do this, because the middleware heap and
the transient heap have already been expanded to fill the amount of storage
specified by the Xmx option in the JVM profile, a full garbage collection is triggered
to free some storage. It is generally better to tune the heap settings to avoid this
situation so that, if possible, the automatic garbage collections are the only full
garbage collections performed.

The output from each JVM's garbage collection process can show you:

* How many of the garbage collections were automatically requested by CICS, and
how many of them were caused by allocation failures.

* How many times the storage heaps were expanded.

* What size the storage heaps reached before the JVM no longer needed to
expand them (that is, the heap sizes that the JVM actually needed to run the
programs that used it).

From this output, you can see whether the JVM profile for the JVM contains the
right settings for the initial and maximum sizes of the storage heaps, and check that
you have not specified too much, or too little, storage for the needs of the programs
that run in the JVM. When you have optimized your use of virtual storage for each
JVM, you might be able to increase the number of JVMs in your CICS region.

Obtaining output from garbage collection
In a non-production environment, you can collect and examine the output from
garbage collection for a JVM. To do this:

304 CICS TS for z/0S: CICS Performance Guide

6.

In the JVM profile that you want to tune, specify the option VERBOSE=gc. This
specifies that the JVM should output garbage collection messages. By default,
the messages are output to the file that is specified by the STDERR option in
the JVM profile (the default name is dfhjvmerr), in the HFS directory that is
specified by the WORK_DIR option in the JVM profile. If possible, clear this file
of any existing messages (you can delete the file and it will be re-created). It is
possible to redirect the output from garbage collection to an alternative location
using a Java class that you have specified on the USEROUTPUTCLASS option
in the JVM profile. [Java Applications in CICS explains how to do this.

If you are attempting to determine suitable heap settings for this JVM profile for
the first time, or because its workload has changed, specify the following values
in the JVM profile:

Xmx=100M (or larger if needed; set higher than you could possibly use)
Xinitth=500K (not applicable for a continuous JVM)

Xms=1M

Xmaxf=1 (turns off heap shrinkage)

Xmaxe=1M (with Xmine setting, sets heap expansions to 500K)

Xmine=1M

Do not specify Xinitsh (will default to 128KB)

Do not specify Xinitacsh (will default to 128KB, if applicable)

These values are designed to ensure that the storage heaps will begin at a size
smaller than required, and expand up to the size that is actually required to run
the JVM's workload of Java programs. If you want to examine the normal
behaviour of the JVM with its present heap settings, leave the values in the
JVM profile as they are.

Set the MAXJVMTCBS system initialization parameter to 1. You can do this
while your non-production CICS system is running by using the CEMT SET
DISPATCHER MAXJVMTCBS command. The output from all the JVMs in the
CICS region is normally directed to the same file, so having only one JVM
makes it easier to analyze the Garbage Collector's behaviour.

Use the CEMT INQUIRE JVM command to view the contents of the JVM pool.
If any JVMs are displayed, purge the JVM pool using the CEMT SET JVMPOOL
PURGE command, so that a JVM with the profile that you want to tune will be
re-created with the VERBOSE=gc option and any new heap settings that you have
specified.

Using TPNS (Teleprocessing Network Simulator) or another network simulator,
run a large number of transactions that are representative of the usual, or
intended, workload for a JVM with the profile that you want to tune. As a guide,
any single transaction needs to be run around 1000 times to ensure that most
JIT-compilation is invoked. However, if you know that a transaction is unlikely
ever to be run this number of times for a given JVM, run the transaction the
maximum expected number of times instead. You need to run at least 101
transactions in a JVM for automatic garbage collection to take place.

Locate the file containing the output from garbage collection.

What the output from garbage collection indicates

Once you have obtained the output from garbage collection, you can use it to tune
the storage heap settings in the JVM profile. The IBM Developer Kit and Runtime
Environment, Java 2 Technology Edition, Version 1.4.2 Diagnostics Guide,
SC34-6358, includes examples of the output from garbage collection and explains
what they show.

To carry out basic tuning, you need to identify four common types of output in your

file:

Chapter 20. Java applications using a Java virtual machine (JVM): improving performance 305

1. Output from a garbage collection that has been automatically requested by
CICS. CICS makes this request after every 101 transactions. Here's an example
of this type of output:
<GC(32): GC cycle started Fri Jun 20 09:20:25 2003
<GC(32): freed O bytes from Transient Heap 100% free (523776/523776) and...>
<GC(32): freed 5676656 bytes, 56% free (7763712/13761024), in 12 ms>
<GC(32): mark: 10 ms, sweep: 2 ms, compact: O ms>
<GC(32): refs: soft 0 (age <= 32), weak 0, final 0, phantom 0>

If the value for the Xmx option in the JVM profile is sufficient or too large, most of
the output in your file will be of this type, once heap expansion is no longer
taking place. You can base your storage heap settings on the values in this
output, as explained later in this topic.

2. Output from a heap expansion. Here's an example of this type of output. This
particular heap expansion is caused by an allocation failure, so it is surrounded
by allocation failure lines (the messages beginning “AF”):
<AF[7]: Allocation Failure. need 16400 bytes, 770 ms since last AF>
<AF[7]: managing allocation failure, action=3 (114624/9697792)>

<GC(8): need to expand mark bits for 13761024-byte heap>

<GC(8): expanded mark bits by 63488 to 215016 bytes>

<GC(8): need to expand alloc bits for 13761024-byte heap>

<GC(8): expanded alloc bits by 63488 to 215016 bytes>

<GC(8): need to expand FR bits for 13761024-byte heap>

<GC(8): expanded FR bits by 126976 to 430036 bytes>

<GC(8): expanded heap by 4063232 to 13761024 bytes, 30% free>
<AF[7]: completed in 1 ms>

Heap expansion can also occur as part of a garbage collection, in which case
the allocation failure lines might not be present. Heap expansions for the
middleware heap have no special indication of the heap type, but the allocation
failure lines associated with heap expansions for the transient heap are marked
“TH_AF” instead of “AF”.

If the value for the Xms option in the JVM profile, which determines the initial
size of the middleware heap, or for the Xinitth option, which determines the
initial size of the transient heap, is smaller than the amount that is actually
required to run the Java programs, the JVM will need to expand the affected
heap, possibly several times. However, it is in fact beneficial to set Xms and
Xinitth smaller than the amount that is actually required, because garbage
collection and heap compaction can then take place during the heap expansion
process, when the heap is smaller. If garbage collection or heap compaction
occurs for the first time when the heap is large (for example, if it does not occur
until CICS automatically requests a garbage collection after 101 transactions),
the process is very expensive. So a correctly tuned JVM should show some
output from heap expansion early on in its lifetime, and this output should cease
when the heap has reached its required size. Heap expansion is only a sign of
incorrect storage heap settings if it continues to occur throughout the lifetime of
the JVM, in combination with heap shrinkage or with garbage collections that
are caused by allocation failures.

3. Output from a garbage collection that has been caused by an allocation failure.
Here's an example of this type of output:

<AF[7]: Allocation Failure. need 524 bytes, 1894 ms since last AF>
<AF[7]: managing allocation failure, action=3 (1962672/3471872)>
<GC(53): GC cycle started Fri Jun 6 07:13:12 2003
<GC(53): freed 114688 bytes from Transient Heap 96% free (507376/523776) and>
<GC(53): freed 247144 bytes, 62% free (2078744/3340800), in 6 ms>
<GC(53): mark: 5 ms, sweep: 1 ms, compact: O ms>
<GC(53): refs: soft 0 (age <= 32), weak 0, final 0, phantom 0>
<AF[7]: completed in 7 ms>

306 CICS TS for z/0S: CICS Performance Guide

This output looks like the output from a garbage collection that has been
requested by CICS, except that it is surrounded by allocation failure lines.
Within the same allocation failure lines, you might also see messages relating to
heap shrinkage or heap expansion (as in the previous example). This type of
output occurs because there is insufficient space in one of the storage heaps for
the JVM to allocate an object (causing the allocation failure), but the middleware
heap and the transient heap have already been expanded to fill the amount of
storage specified by the Xmx option in the JVM profile. The garbage collection is
intended to make more storage available to fulfil the JVM's allocation request.
This type of garbage collection, particularly when it occurs throughout the
lifetime of the JVM, shows that the value for the Xmx option in the JVM profile is
insufficient for the requirements of the Java programs, and it can indicate that
the JVM has not been correctly tuned. If you are tuning a JVM for the first time,
and you have set the Xmx option to a value higher than the Java programs could
possibly use, you should not see this type of output.

4. Output from a request to expand the JVM's system heap or a request to expand
the JVM's application-class system heap. Here's an example of this type of
output:

GC[14]: Expanded System Heap by 65536 bytes
GC[14]: Expanded ACS Heap by 65536 bytes

This type of output occurs because the JVM had insufficient space in the
system heap or in the application-class system heap. The initial size of the
system heap is determined by the Xinitsh option in the JVM profile, and the
initial size of the application-class system heap is determined by the Xinitacsh
option. (The space for the application-class system heap is allocated in addition
to the space for the system heap, and not as a subset of the space for the
system heap.) No garbage collection takes place in the system heap or in the
application-class system heap, so there is no benefit in setting these values
smaller than the amount that is actually required.

The IBM Developer Kit and Runtime Environment, Java 2 Technology Edition,
Version 1.4.2 Diagnostics Guide has fuller descriptions and examples of these and
other types of output. The types of output listed above are those that are most
significant for tuning JVMs that are used by CICS. Once you have identified these
types of output in your output file, deal with them as described below.

If you have output from a request to expand the system heap:

If the output from your JVM's garbage collection includes the fourth type of output
listed above, output from a request to expand the application-class system heap or
the system heap, this shows that the values of the Xinitacsh or Xinitsh options in
the JVM profile are too small. Locate all the output from requests to expand the
application-class system heap or the system heap, and increase the values of
Xinitacsh (for the application-class system heap) or Xinitsh (for the system heap)
by this amount.

If you have output from a garbage collection that has been caused by an
allocation failure:

If the output from your JVM's garbage collection process includes the third type of
output listed above, output from a garbage collection that has been caused by an
allocation failure, this shows that the value for the Xmx option in the JVM profile is
insufficient for the requirements of the Java programs. The extra activities that the
Garbage Collector must perform to manage this situation occupy CPU time that
could be saved by tuning the JVM correctly. You should normally choose a value for

Chapter 20. Java applications using a Java virtual machine (JVM): improving performance 307

Xmx that provides all the space needed for the transient and middleware heaps, so
that the only garbage collections that take place are those automatically requested
by CICS. To determine a suitable value, in a non-production system, re-run the
process described in ['Using the output from garbage collection to tune storage for|
WVMs” on page 304,|this time choosing a very large value for Xmx. This output file
should not contain any output from garbage collections caused by allocation
failures. Determine a more suitable value for Xmx using the output in the file from a
garbage collection that has been automatically requested by CICS, as described
later in this topic.

If you have output from a heap expansion:

If the output from your JVM's garbage collection process includes the second type
of output listed above, output from a heap expansion, you do not need to be
concerned if this output only occurs early on in the JVM's lifetime. Remember that a
correctly tuned JVM should show some output from heap expansion early on in its
lifetime, and this output should cease when the heap has reached its required size.
If the number of heap expansions seems excessive, you could consider increasing
the value of the Xms option in the JVM profile, which determines the initial size of
the middleware heap, or of the Xinitth option, which determines the initial size of
the transient heap. (If the transient heap is being expanded, the allocation failure
lines are marked “TH_AF” instead of “AF”.) As a guide, once you have identified the
maximum size needed for the transient heap and middleware heap, as described
later in this topic, set the values of Xinitth and Xms to approximately 50% of these
maximum values. However, it is not worth setting the value of Xinitth lower than
the default setting of 500 KB.

If heap expansion continues to occur throughout the lifetime of the JVM, in
combination with heap shrinkage or with garbage collections that are caused by
allocation failures, this indicates that the value for the Xmx option in the JVM profile
is insufficient for the requirements of the Java programs. As described above, you
should normally choose a value for Xmx that provides all the space needed for the
transient and middleware heaps, which you can identify by re-running the process
described in[‘Using the output from garbage collection to tune storage for JVMs” on|
|page 304| and choosing a very large value for Xmx. This time, you should only see
heap expansion early on in the lifetime of the JVM. Determine a more suitable
value for Xmx by using the output from a garbage collection that has been
automatically requested by CICS, as described next.

Identifying storage settings from output from a garbage collection that has
been automatically requested by CICS:

The output from your JVM's garbage collection process is certain to include the first
type of output listed above, output from a garbage collection that has been
automatically requested by CICS after every 101 transactions (provided, of course,
that you have run at least 101 transactions in the JVM). You can base your storage
heap settings on the values in this output.

Select the output from a garbage collection that took place towards the end of your
transaction workload, when the JVM was in a steady state, with the output file
showing only automatic garbage collections at that point. If the output file continues
to show any of the other types of output after the initial heap expansion phase,
repeat the transaction workload with a larger value specified for Xmx, until you obtain
an output file where the only activity after the initial phase is the automatic garbage
collections that are requested by CICS after every 101 transactions.

308 CICS TS for z/0S: CICS Performance Guide

Now examine this output in detail to identify the high water marks for the transient
and middleware heaps. Here's the example output again:

<GC(32): GC cycle started Fri Jun 20 09:20:25 2003

<GC(32): freed 0 bytes from Transient Heap 100% free (523776/523776) and...>
<GC(32): freed 5676656 bytes, 56% free (7763712/13761024), in 12 ms>

<GC(32): mark: 10 ms, sweep: 2 ms, compact: O ms>

<GC(32): refs: soft 0 (age <= 32), weak 0, final 0, phantom 0>

The second line of this output shows that the transient heap has 523776 bytes
available out of a total heap size of 523776 bytes, so 100% of the heap is free.
(This should normally be the case in an automatic garbage collection requested by
CICS after every 101 transactions, because the transient heap is thrown away at
the end of each transaction.) The transient heap has grown to 523776 bytes, that
is, slightly larger than the default allocation of 500 KB. As noted earlier in this topic,
the value of the Xinitth option (which determines the initial size of the transient
heap) should normally be set to 50% of the maximum size of the heap, but it is not
worth setting it lower than the default setting of 500 KB. The Xinitth option should
therefore be left as the default allocation.

The third line of this output shows the same information for the middleware heap. It
has 7763712 bytes available out of a total heap size of 13761024 bytes, so 56% of
the heap is free. This shows that the high water mark for the middleware heap was
just over 13 MB. The Xms option, which determines the initial size of the middleware
heap, can therefore be set to 50% of this value, so about 7 MB. You could consider
increasing this value if the number of heap expansions seems excessive.

To determine an appropriate setting for the Xmx option, which specifies the
maximum total size for the middleware and transient heaps, you can add together
the maximum requirements that you found for the transient heap and the
middleware heap. Add an additional 500 KB as a buffer between the transient heap
and middleware heap, and round up to a 1 MB boundary. In this example, with a
transient heap of 511 KB, a middleware heap of 13.1 MB, and a buffer of 500 KB,
the total space required is about 14.2 MB. A suitable setting for the Xmx option in
this case would be 15 MB.

Bear in mind that the settings that you determine using this process are based on
high water marks for storage usage. You might be able to run with lower heap sizes
in the JVM profile, taking the cost of additional infrequent garbage collections when
the heap expands beyond the normal amount. You need to experiment with your
Java programs and determine optimum values from monitoring data.

When you have tuned each of your JVM profiles in this way, you should have found
storage heap settings that minimize the need for garbage collection but use only the
amount of virtual storage that is required. You might then find that you have saved
virtual storage and your CICS region is able to support a larger number of JVMs.
Bear in mind that there is also a basic storage cost for each JVM. This basic
storage cost represents the amount of storage in the Language Environment
enclave that is used for the structure of the JVM, and when you calculate the total
size of the JVM, the basic storage cost must be added to the storage that is used
for the storage heaps. |“Managing your JVM pool for performance” on page 314| lists
the basic storage cost for each type of JVM, and tells you how to determine the
number of JVMs that your CICS region can support. You should tune the Language
Environment enclave settings to ensure that they are as close as possible to the
storage actually used by your JVMSs, as described in|“Tuning Language|
[Environment enclave storage for JVMs” on page 310]

Chapter 20. Java applications using a Java virtual machine (JVM): improving performance 309

Sample storage settings for JVMs running enterprise beans

The transaction used as the test case to produce these figures consisted of a
simple stateless session bean, therefore these storage settings should be viewed
as the minimum case.

In tests, the following storage settings for the middleware and transient heap
provided good performance for a minimal stateless session bean, while keeping
storage allocations to a minimum:

e Xmx=20M
e Xinitth=500K
e Xms=13M

Tuning Language Environment enclave storage for JVMs

As explained in [Java Applications in CICS| a JVM in CICS runs as a UNIX System
Services process in a Language Environment enclave created using the Language
Environment preinitialization module, CEEPIPI, and it uses MVS Language
Environment services rather than CICS Language Environment services. As a
result, all storage obtained by the JVM is MVS storage, obtained by calls to MVS
Language Environment services. This storage resides within the CICS address
space but is not included in the CICS dynamic storage areas (DSASs).

Each JVM executes within its own Language Environment enclave, using storage
allocations set by CICS. [Java Applications in CICS|explains how the storage heaps
in the JVM are allocated from the Language Environment enclave heap storage.

The Language Environment enclave for each JVM needs to contain not only the
storage heaps described in[‘Tuning storage for individual JVMs” on page 302 but
also a basic amount of storage for each JVM. This basic storage cost represents
the amount of storage in the Language Environment enclave that is used for the
structure of the JVM, and when you calculate the total size of the JVM, the basic
storage cost must be added to the storage that is used for the storage heaps.

The basic Language Environment run-time options used by CICS for a JVM enclave
are shown in|Table 13

Table 13. Language Environment run-time options used by CICS for the JVM enclave

Language Environment run-time options Value set by CICS
Library heap storage that is not restricted to a location ANYHEAP (4K,8176,ANY, FREE)
below 16MB.

Library heap storage that must be located below 16MB. BELOWHEAP (4096,2048, FREE)

Storage for user-controlled dynamically allocated variables. | HEAP(4M,1M,ANY,FREE,0K,4080)

Library stack storage LIBS(8,900,FREE)
Library routine stack frames that can reside anywhere in STACK (128K, 128K,ANY,KEEP,
storage 128K, 128K)

Amount of storage reserved for the out-of-storage condition | STORAGE(, , , 0K)
and the initial content of storage when allocated and freed.

Note: For information about Language Environment run-time options, see z/OS:
Language Environment Customization, SA22-7564.

310 CICS TS for 2/0S: CICS Performance Guide

You can override the Language Environment run-time options using the
DFHJVMRO user-replaceable module, which is described in
[Customization Guidel The default Language Environment storage settings that
control the initial size of, and incremental additions to, the Language Environment
enclave heap storage can make inefficient use of MVS storage. The storage
settings that CICS supplies in DFHJVMRO are more efficient. You can also modify
these settings to match more closely with the storage use of your JVMs. To improve
the use of MVS storage, you are recommended to use DFHJVMRO to set the initial
allocation for the amount of Language Environment enclave heap storage to a value
that approximates to the storage actually used by your Java applications that run in
JVMs, using this as an initial heap size. Note that the settings that you make using
DFHJVMRO apply to all the JVMs in your CICS region (with the exception of the
master JVM that initializes the shared class cache), so you should consider the
different storage heap sizes and basic storage costs that JVMs with different
profiles might have. As noted in|“Managing your JVM pool for performance” on|
the basic storage cost for a standalone JVM is significantly larger than

the basic storage cost for a worker JVM.

You can use the CICS statistics to see how much Language Environment enclave
heap storage is used by your JVMs. The field “Peak Language Environment heap
storage used” in the JVM Profile statistics shows the peak (or high water mark)
amount of Language Environment enclave heap storage that was actually used by
a JVM with the specified execution key and profile. Collecting this statistic affects
the performance of JVMs, so you should not carry out this process in a production
environment. To obtain this information:

1. Use the EXEC CICS INQUIRE JVMPROFILE command to identify each of the
JVM profiles in use in your CICS region. (There is no CEMT equivalent for this
command.)

2. Specify the option LEHEAPSTATS=YES in each of the JVM profiles that you
have identified. Note that you do not need to include the JVM profile that is
used for the master JVM that initializes the shared class cache, because
DFHJVMRO is not used for the master JVM. The CICS-supplied sample JVM
profile for the master JVM is DFHJVMCC. If a JVM profile has only been used
for the master JVM, it is not found by the EXEC CICS INQUIRE JVMPROFILE
command.

3. Purge your JVMs using the CEMT SET JVMPOOL PHASEOUT command (or
the equivalent EXEC CICS command), around the time of a statistics reset
(either before or immediately afterwards). This ensures that the statistics
collected in the next statistics interval are a more accurate reflection of the
storage usage for your JVMs. It also ensures that your JVMs will be re-created
using the LEHEAPSTATS=YES option.

4. Run a representative sample of the transactions that use your JVMs. When you
have finished, either collect the JVM profile statistics using the EXEC CICS
COLLECT STATISTICS JVMPROFILE or CEMT PERFORM STATISTICS
JVMPROFILE command, or view the JVM profile statistics that have been
collected during the statistics interval.

5. Remove the option LEHEAPSTATS=YES from your JVM profiles, or change it to
NO (which is the default). Purge your JVMs using the CEMT SET JVMPOOL
PHASEOUT command to ensure that they are re-created with the option
LEHEAPSTATS=NO.

6. Examine the field “Peak Language Environment heap storage used” in the JVM
Profile statistics for each JVM profile. Use this value to set as the initial heap
size in DFHJVMRO. If the peak amount of storage used varies between JVM
profiles, select a suitable value based on the relative usage of each JVM profile.

Chapter 20. Java applications using a Java virtual machine (JVM): improving performance 311

Try to select a value that is close to the storage used by most of your JVMs,
bearing in mind that Language Environment can make additions to the heap
storage, but it cannot remove unwanted storage that is given in the initial
allocation.

An alternative method of identifying a suitable value for the initial allocation for the
amount of Language Environment enclave heap storage, is to use the RPTO(ON)
and RPTS(ON) options in DFHJVMRO to obtain storage reports. These options
increase CPU costs, so they should not be used in a production environment.
DFHJVMRO cannot identify the JVM profile to which each storage report applies,
so you should use this procedure for only one JVM profile at a time, by making sure
you are using transactions that request only that JVM profile.

To obtain storage reports for your JVMs:

1. Set the RPTO(ON) and RPTS(ON) options in DFHJVMRO. These options are
within comments in the supplied source of DFHJVMRO. Specifying these
options causes Language Environment to report on the storage options set, and
to write a storage report showing the actual storage used.

2. Purge any JVMs in your JVM pool using the CEMT SET JVMPOOL
PHASEOUT command (or the equivalent EXEC CICS command), to ensure that
they are re-created using the RPTO(ON) and RPTS(ON) options.

3. Run a representative sample of the transactions that use JVMs with the JVM
profile that you want to examine. (The JVM profile for a program is named in
the PROGRAM resource definition.) When you have finished, remove the
RPTO(ON) and RPTS(ON) options from DFHJVMRO, then purge your JVMs
using the CEMT SET JVMPOOL PHASEOUT command (or the equivalent
EXEC CICS command). The storage reports are written when each JVM ends.
The storage reports include a recommendation for the initial Language
Environment enclave heap storage (shown as “Total heap storage used (sugg.
initial size)”), which is equal to the total amount of Language Environment
enclave heap storage that was used by the JVM.

4. Repeat the procedure for JVMs with each different JVM profile that is used in
your CICS region, with the exception of the JVM profile that is used for the
master JVM that initializes the shared class cache, because DFHJVMRO is not
used for the master JVM. Examine all the sets of storage reports to check for
any variations in the amount of storage used. You can then select a suitable
value to be set as the value for the initial Language Environment enclave heap
storage, using DFHJVMRO. Try to select a value that is close to the storage
used by most of your JVMs, bearing in mind that Language Environment can
make additions to the heap storage, but it cannot remove unwanted storage that
is given in the initial allocation.

For example, if you receive the following storage report:
HEAP statistics:

Initial size: 31457280
Increment size: 2097152
Total heap storage used (sugg, initial size): 38837096
Successful Get Heap requests: 155034
Successful Free Heap requests: 108642
Number of segments allocated: 7
Number of segments freed: 0

you can set these values for Language Environment enclave heap storage, using
DFHJVMRO:

HEAP(38M, 1M, ANYWHERE, FREE,, 0K, 4080)

312 cCICS TS for z/0S: CICS Performance Guide

The amounts of storage required for a JVM in a Language Environment enclave
may require changes to installation exits, IEALIMIT or IEFUSI, which you use to
limit the region size. Note that running with a default IEFUSI and specifying
REGION=0M will result in a region size of 32M, which is not enough to support a
JVM.

A possible approach is to have a JVM owning region (JOR), to which all JVM
program executions are routed. Such a region would run only JVM workloads,
thereby allowing you to minimize the amount of CICS DSA storage required, and
allow the maximum amount of MVS storage to be allocated for use by JVMs.

Tuning the z/OS shared library region

The shared library region is a z/OS feature that enables address spaces to share
dynamic link library (DLL) files. This feature enables your CICS regions to share the
DLLs that are needed for JVMs, rather than each region having to load them
individually. This can greatly reduce the amount of real storage used by MVS, and
the time it takes for the regions to load the files.

The storage that is reserved for the shared library region is allocated in each CICS
region when the first JVM is started in the region. (This might be the master JVM
that initializes the shared class cache.) The amount of storage that is allocated is
controlled by the SHRLIBRGNSIZE parameter in z/OS, which is in the BPXPRMxx
member of SYS1.PARMLIB. The minimum is 16MB, and the z/OS default is 64MB.
You can tune the amount of storage that is allocated for the shared library region by
investigating how much space you actually need, bearing in mind that other
applications besides CICS might be using the shared library region, and adjusting
the SHRLIBRGNSIZE parameter accordingly.

If you want to reduce the amount of storage that is allocated for the shared library
region, first check that you do not have wasted space in your shared library region.
Bring up your normal workload on the z/OS system, then issue the command D
OMVS,L to display the library statistics. If there is unused space in the shared
library region, you can reduce the setting for SHRLIBRGNSIZE to remove this
space. If CICS is the only user of the shared library region, you can reduce the
SHRLIBRGNSIZE to the minimum of 16MB, because the DLLs needed for the JVM
only use around 10MB of the region.

If you find that all the space in the shared library region is being used, but you still
want to reduce this storage allocation in your CICS regions, there are three possible
courses of action that you can consider:

1. Itis possible to set the shared library region size smaller than the amount of
storage that you actually need for the files. When the shared library region is
full, files are loaded into private storage instead, and do not benefit from the
sharing facility. If you choose this course of action, you should make sure that
you bring up your more important applications first, to ensure that they are able
to make use of the shared library region. This course of action is most
appropriate if most of the space in the shared library region is being used by
non-critical applications.

2. The DLLs that are placed in the shared library region are those marked with the
extended attribute +l. You can remove this attribute from some of your files to
prevent them going into the shared library region, and so reduce the amount of
storage that you need for the shared library region. If you choose this course of
action, select files that are less frequently shared, and also try not to select files
that have the extension .so. Files with the extension .so, if they are not placed

Chapter 20. Java applications using a Java virtual machine (JVM): improving performance 313

in the shared library region, are shared by means of user shared libraries, and
this sharing facility is less efficient than using the shared library region. This
course of action is most appropriate if large files that do not have the extension
.so are using most of the space in the shared library region.

3. If you remove the extended attribute +l from all the files relating to the CICS
JVM, then your CICS regions do not use the shared library region at all, and no
storage is allocated for it within the CICS regions. If you choose this course of
action, you do not benefit from the shared library region's sharing facility. This
course of action is most appropriate if other applications on the z/OS system
require a large shared library region, and you do not want to allocate this
amount of storage in your CICS regions.

If you choose to remove the extended attribute +l from any of your files, when you
replace those files with new versions (for example, during a software upgrade),
remember to check that the new versions of the files do not have this attribute.

You can find more information about shared libraries in zZOS UNIX on the z/OS
UNIX System Services Web site at http://www.ibm.com/servers/eserver/zseries/
zos/unix/perform/sharelib.html.

Managing your JVM pool for performance

lJava Applications in CICS|explains how the JVM pool is structured, and what CICS
does to manage the JVMs in it.

As that topic explains, the number of JVMs that a single CICS Transaction Server

for z/OS region can support is governed mainly by:

* The amount of processor time used by the JVMs.

* The amount of MVS storage required by the JVMs.

* The amount of MVS storage and processor time that are available for the use of
the CICS region.

To estimate how many JVMs you need to support a desired level of transaction
throughput, use the formula:

ETR x Response time = Number of JVMs

where
ETR is the desired Tevel of transaction throughput
Response time is the time taken to run your transaction in a JVM

By following the tuning processes described in this topic, you might be able to:

» Decrease the response time for your transactions, by ensuring that processor
time is not being wasted during and between uses of JVMs. A JVM in CICS can
only be used by one Java program at a time, and it is not made available for use
during a wait.

* Ensure that each CICS region that is running your JVMs contains the optimum
number of JVMs for the region size, and so is making the best use of storage
and processor time.

As described in[‘Tuning storage for individual JVMs” on page 302|and [‘Tuning
|Language Environment enclave storage for JVMs” on page 310,{you can tune the
storage settings and Language Environment enclave settings for your JVMs to
adjust the amount of storage that is used by a single JVM. In addition to this, you
can ensure that your CICS region is set up so that the JVM pool contains the
optimum number of JVMs for the MVS storage space and processor time that are

314 CICS TS for z/0S: CICS Performance Guide

available to the region, and so that processor time is not being wasted on
unnecessary activities. A suggested process for tuning your JVM pool is as follows:

1.

Examine the amount of CPU time that is used by your JVMs on their own J8
and J9 TCBs. Check that you have chosen the optimum level of reusability for
each of your JVMs, considering the design of the applications that use them.
Make sure that you have stopped any unnecessary CPU usage caused by the
use of tracing, by the use of the USEROUTPUTCLASS option in JVM profiles,
or by resettable JVMs that are being re-initialized instead of being reset. You
might also be able to reduce the initialization time for your JVMs. Then decide if
you want to increase or reduce the number of JVMs in the CICS region,
considering the time that transactions are having to wait to acquire a JVM. Take
into account your level of QR TCB utilization, because a high level can mean
that adding more JVMs might not increase the throughput of your system.
[‘Examining the CPU time used by your JVMs|tells you how to do this.

If you find that you want to increase the number of JVMs, compare the amount
of storage needed to support a single JVM, with the amount of storage space
that is available (or that you could make available) to the CICS region, and
calculate the maximum number of JVMs that your CICS region could support.
“Calculating the maximum number of JVMSs for which storage can be provided?|

on page 321|tells you how to do this.

Taking your findings about CPU usage and storage availability into account,
choose and set an appropriate MAXJVMTCBS limit for the CICS region.
[‘Choosing and setting an appropriate MAXJVMTCBS limit” on page 324 tells
you how to do this.

If you subsequently receive warnings about MVS storage constraints,
re-examine the storage settings for your JVMs, and adjust the storage settings,
the MAXJVMTCBS limit, or both, to decrease the amount of storage that the
JVMs in the CICS region are using. ['‘Dealing with warnings about MVS storage]
[constraints” on page 324|tells you how to do this.

If you find that the incidence of mismatching and stealing in your JVM pool is
excessive, and JVMs are frequently being destroyed and re-initialized to fulfil
requests for a JVM with a different profile, you can indirectly limit the number of
JVMs with a particular profile by limiting the number of transactions that request
a JVM with that profile. ['Dealing with excessive mismatches and steals” on|

tells you how to do this.

Examining the CPU time used by your JVMs

To find out if the performance of your CICS region could benefit from an increase or
a reduction in the number of JVMs, you can use CICS monitoring and statistics
information to help you answer the following questions:

1.

2.
3.
4.

Have | chosen the optimum level of reusability for each of my JVMs,
considering the design of the applications that use them?

Have | stopped any unnecessary CPU usage by my JVMs?
How long are transactions having to wait to acquire a JVM?
Is the level of QR TCB utilization a limiting factor for this CICS region?

Here's how to do this:

1.

Have | chosen the optimum level of reusability for each of my

JVMs?

|"How JVMs are reused and reset” in Java Applications in CICS explains the three

levels of reusability for JVMs: resettable JVMs, continuous JVMs, and single-use
JVMs. Before changing the level of reusability for a JVM, read that topic.

Chapter 20. Java applications using a Java virtual machine (JVM): improving performance 315

The level of reusability for a JVM is determined by the REUSE option in the JVM
profile. Although some levels of reusability give a higher performance than other
levels of reusability, there are important programming considerations for Java
applications in each case. The performance characteristics and programming
considerations for each level of reusability can be summarized as follows:

Table 14. Reuse and reset characteristics of JVM types

JVM type (and

REUSE option | Compatible

Are program Are programs Performance

reused but not
reset)

action between |in profile with the invocations allowed to
JVM uses) shared class allowed to pass change
cache? state to characteristics of

subsequent the JVM?

invocations?
Resettable (JVM | REUSE= Yes No (JVM storage No (JVM Medium (JVM reset,
reused and reset) | RESET cleaned up after destroyed if this but not initialized for

each use) occurs) each use)
Continuous (JVM |REUSE= YES |Yes Yes Yes Highest (JVM not

initialized or reset
for each use)

Single-use (JVM
destroyed)

REUSE=NO |No

No (JVM destroyed) |Yes Lowest (JVM
initialized for each

use)

The performance of resettable and continuous JVMs is also influenced by whether
or not they use the shared class cache: that is, whether they are worker JVMs with
the option CLASSCACHE=YES in their JVM profiles, as opposed to standalone
JVMs with the option CLASSCACHE=NO in their JVM profiles. The master JVM in
a CICS region must be either resettable or continuous, and all the worker JVMs
inherit their level of reusability from the master JVM. ['How JVMs are reused and|
|reset” in Java Applications in CICS1 has more information about the relationship
between the shared class cache and the level of reusability.

Worker JVMs have a shorter initialization time than standalone JVMs. Broadly
speaking, the JVM's relationship to the shared class cache makes the greatest
difference to its initialization time, but the level of reusability makes the greatest
difference to a JVM's performance in terms of overall transaction processor time.

In terms of initialization time, the performance of the different types of JVM can be
ranked as follows:
[Shortest]

Resettable worker JVM
Continuous worker JVM

Resettable standalone JVM
Single-use JVM [but see note below]
Continuous standalone JVM

[Longest]

It is important to note that although the initialization time for a single-use JVM is
about the same as for a resettable standalone JVM, this initialization time occurs
every time a program runs in this type of JVM, making the cumulative initialization
time much longer. You should also bear in mind that the first JVM that is initialized
in a CICS region, whatever its type, has a longer initialization time than subsequent
JVMs initialized in the region, because of the setup required at this time.

316 CICS TS for z/0S: CICS Performance Guide

In terms of the processor time used for each transaction, the performance of the
different types of JVM can be ranked as follows:
[Shortest]

Continuous JVM (standalone or worker)
Resettable JVM (standalone or worker)

Single-use JVM [because of initialization for each use]
[Longest]

Some applications perform slightly better in a worker JVM, and some applications
perform slightly better in a standalone JVM.

The level of reusability for a JVM must be matched to the applications that run in it.
To ensure that all your JVMs are operating at the optimum level of reusability for
the applications that run in them, you can use these guidelines for selecting a
REUSE setting in the JVM profile:

Resettable JVMs (REUSE=RESET)
This level of reusability gives medium performance, because although the JVM
is initialized only once (not for each use, as the single-use JVM is), a JVM reset
is performed each time a Java program finishes running in the JVM. However,
the reset provides protection for programs against the potential actions of a
previous program invocation in the same JVM. Once the JVM has been reset,
the application code that runs for the next Java program is unable to determine
whether it is running in a new JVM or a JVM that has been reset. Resettable
JVMs can also use the shared class cache to reduce their storage requirements
and their initialization time, if the master JVM for the CICS region is resettable
(with the option REUSE=RESET in its JVM profile). If an application is using a
resettable JVM, you need to make sure that the Java programs are not
performing unresettable actions, because this causes the JVM to be destroyed
instead of being reset, which greatly reduces the performance of the JVM.
UVMs are reused and reset” in Java Applications in CICY explains how to do
this.

Continuous JVMs (REUSE=YES)
This level of reusability gives the highest performance of the three levels,
because the JVM is initialized only once, not for each use, and no JVM reset is
performed between each use. However, the absence of a reset means that the
application code that runs in the next Java program or transaction might be
affected by the actions of the previous program invocation. The applications that
use this type of JVM must be designed and tested to ensure that they can run
in a continuous JVM without causing any undesirable consequences for
subsequent program invocations in the same JVM, following the guidelines in
FHow JVMs are reused and reset” in Java Applications in CICS, Continuous
JVMs can also use the shared class cache to reduce their storage requirements
and their initialization time, if the master JVM for the CICS region is continuous
(with the option REUSE=YES in its JVM profile).

Single-use JVMs (REUSE=NO)
This level of reusability gives the lowest performance of the three levels,
because a new JVM is initialized for each program invocation, and destroyed
after use. This means programs cannot affect subsequent program invocations,
but the initialization of a new JVM for each program incurs very high CPU
costs. Single-use JVMs are also not permitted to use the shared class cache.
New Java applications should not be developed in such a way that they can
only run in a single-use JVM. You should only use this type of JVM for Java
programs that must perform an unresettable action, and cannot at present be

Chapter 20. Java applications using a Java virtual machine (JVM): improving performance 317

re-designed to eliminate this action so that they could run in a resettable JVM
or in a continuous JVM. To improve performance, you should re-design these
programs as soon as you can.

Selecting the optimum level of reusability for each of your JVMs ensures that you
are not wasting CPU time by performing JVM re-initializations, or JVM resets, in
situations where these actions are not required for the correct operation of the
applications that use the JVM.

2. Have | stopped any unnecessary CPU usage by my JVMs?

The CICS monitoring facility can be used to monitor the CPU time used by a
transaction that invokes a JVM program, including the amount of CPU time used by
the JVM on a J8 or J9 TCB. The CICS monitoring facility also includes the elapsed
time spent in the JVM, and the number of JCICS API requests issued by the JVM
program. The relevant monitoring data fields, most of which are in performance
data group DFHTASK, are shown in

Table 15. JVM-related monitoring data fields

Group Field ID Field name | Description

DFHTASK 253 JVMTIME The total elapsed time spent in the JVM by
the user task. This comprises the JVM
initialization time, the Java application
execution time, and the JVM reset time. The
fields JVMITIME and JVMRTIME show the
initialization and reset time respectively.

DFHTASK 254 JVMSUSP The elapsed time the user task was
suspended by the CICS dispatcher while
running in the JVM.

DFHTASK 260 J8CPUT The processor time during which the user
task was dispatched by the CICS dispatcher
domain on a CICS J8 mode TCB (used for
JVMs in CICS key). The field JVMTIME
shows the actual elapsed time spent in the
JVM.

DFHTASK 267 JOCPUT The processor time during which the user
task was dispatched by the CICS dispatcher
domain on a CICS J9 mode TCB (used for
JVMs in user key). The field JVMTIME shows
the actual elapsed time spent in the JVM.

DFHTASK 273 JVMITIME The elapsed time spent initializing the JVM
environment.
DFHTASK 275 JVMRTIME | The elapsed time spent resetting the JVM

environment to its initial state. This includes
any garbage collection that takes place in the
JVM.

DFHTASK 277 MAXJTDLY | The elapsed time in which the user task
waited to obtain a CICS JVM TCB (J8 or J9
mode), because the CICS system had
reached the limit set by the system
parameter, MAXJVMTCBS.

DFHCICS 025 CFCAPICT | The number of CICS OO foundation class
requests, including the Java API for CICS
(JCICS) classes, issued by the user task.

318 CICS TS for 2/0S: CICS Performance Guide

When looking at JVM initialization time, bear in mind that the first JVM that is
initialized in a CICS region, whatever its type, has a longer initialization time than
subsequent JVMs initialized in the region, because of the setup required at this
time. Depending on your applications, specifying the Xservice="-Xquickstart"
option in your JVM profiles can provide some reduction in the initialization time for
your JVMs. The option causes the just-in-time (JIT) compiler function of the JVM to
omit certain optimizations when a method is first compiled. If the method is used
frequently enough, the JIT compiler compiles it again using all the optimizations.
This technique improves initialization time for the JVM, but performance can be
degraded on subsequent reuses of the JVM, because the code is not fully
optimized or because of the time required for the second compile.

When looking at JVM reset time, note that for a continuous JVM (with the option
REUSE=YES in its JVM profile), the JVM reset time is usually zero, but not always.
This is because although continuous JVMs are not reset after each use, CICS still
requests garbage collection for these JVMs every 101 transactions. This process
takes place after the 101st use of the JVM, and garbage collection is recorded as
JVM reset time.

Even if you do not plan to change the number of JVMs in your CICS region, you
should ensure that the JVMs are not using unnecessary CPU time. In particular,
look out for the following issues:

* The use of tracing.
* The use of the USEROUTPUTCLASS option in JVM profiles.
» Resettable JVMs that are being re-initialized instead of being reset.

Tracing: Setting the CICS master system trace flag on significantly increases the
CPU cost of a JVM program execution. In a production environment, consider
running your CICS region with this flag set off. You can do this by initialising CICS
with SYSTR=OFF, or by using the CETR transaction.

Activating tracing for JVMs also increases the CPU cost. JVM tracing can produce
large amounts of output in a very short time. Ensure that you normally only activate
JVM trace for special transactions. |Java Applications in CICS|tells you how to
control JVM tracing.

The USEROUTPUTCLASS option: Specifying the USEROUTPUTCLASS option
in a JVM profile has a negative effect on the performance of JVMs. The
USEROUTPUTCLASS option enables developers using the same CICS region to
separate out their own JVM output, and direct it to an identifiable destination of their
choice, but it involves the building and invocation of additional class instances. For
best performance in a production environment, you should not use this option;
reserve it for use during application development.

The CICS-supplied JVM profiles do not specify the USEROUTPUTCLASS option.

Unresettable events in resettable JVMs: In some circumstances, you might find
that some of the resettable JVMs in your CICS region are not actually being
successfully reset, but instead are being discarded and re-initialized for each
transaction, at a higher CPU cost. This happens because one or more
unresettable events has taken place in the JVM. The most frequent cause of an
unresettable event is that the Java program that just ran in the JVM has performed
an unresettable action. An unresettable action is when a program uses Java
interfaces that modify the state of a JVM in a way that cannot be properly reset,
such as changing system properties or loading a native library. The document

Chapter 20. Java applications using a Java virtual machine (JVM): improving performance 319

Persistent Reusable Java Virtual Machine User's Guide, SC34-6201, has more
information about these unresettable actions. If one or more such actions are
detected during the execution of a user's Java program, the JVM is marked
unresettable, and CICS destroys the JVM when the Java program has finished
using it. The storage used by the JVM is recovered, and a new JVM is initialized.
Unresettable events can also occur if there is an error in the JVM code.

In the CICS statistics for JVM profiles (see r‘JVM profile statistics” on page 506[), the
field “Number of times JVMs were unresettable for this profile” shows the number of
unresettable JVMs for each JVM profile and execution key. If the statistics show
that there were unresettable JVMs for a JVM profile that specifies the option
REUSE=RESET or the older option Xresettable=YES, meaning that the JVMs
should have been resettable, then it is probable that some of the applications
requesting that JVM profile are performing unresettable actions. You can identify
those applications by looking at byte 6, bit O of the transaction flags field,
TRANFLAG (field 164 in group DFHTASK), in the CICS performance class
monitoring record for each transaction, which indicates if a JVM was not reset. The
JVM monitors the use of interfaces that prevent resetting, and the events that
prevent reuse are logged (provided that the appropriate event logging system
properties are specified in the JVM properties file for the JVM).

'How JVMs are reused and reset” in Java Applications in CICS explains more about
the levels of reusability for JVMs and the process of resetting a JVM, and tells you
how to log unresettable actions during testing of your Java programs. Your Java
programs should not perform unresettable actions when they are used in a
production environment. If you can eliminate these actions, the performance of your
resettable JVMs should improve significantly.

3. How long are transactions having to wait to acquire a JVM?
To find out how long your transactions are having to wait to acquire a JVM, look at
the delay time for the JVM pool, shown in the statistics field “Total Max TCB Pool
Limit delay time” in the CICS dispatcher TCB pool statistics (see [‘Dispatcher]
domain: TCB Pool statistics” on page 448). This tells you how long your
transactions waited to acquire a JVM at those times when the MAXJVMTCBS limit
had been reached for the JVM pool.

 If the delay time seems low, it might be that the MAXJVMTCBS limit for your
JVM pool is not often reached; the statistics field “Times at Max TCB Pool Limit”
in the CICS dispatcher TCB pool statistics shows you if this is the case. In this
situation, it might be possible to reduce your MAXJVMTCBS limit, if you wanted
to do so, without causing a serious increase in the delay time for your
transactions.

+ If the delay time seems high, divide it by the statistics field “Total Attaches
delayed by Max TCB Pool Limit” in the CICS dispatcher TCB pool statistics, to
see how long each transaction was made to wait. (Or look at the summary TCB
pool statistics, where the field “Average Max TCB Pool Limit delay time” has this
information.) It might be the case that your JVM pool is normally at its
MAXJVMTCBS limit, so transactions often wait for at least a short time to acquire
a JVM. You should only consider increasing your MAXJVMTCBS limit if you feel
that the delay time for each transaction is excessive.

You can use the CICS monitoring data field MAXJTDLY (field ID 277), in
performance data group DFHTASK, to check the time that an individual transaction
was made to wait to acquire a JVM.

320 CICS TS for z/0S: CICS Performance Guide

4. Is the level of QR TCB utilization a limiting factor for this CICS
region?

If you have found that the delay time for transactions waiting to acquire a JVM is
excessive, you still need to check your level of QR TCB utilization before deciding
to increase your MAXJVMTCBS limit. Calls made by a Java program for CICS
services, such as using a JCICS class to access VSAM data, require a switch to
the QR TCB. (The monitoring data field CFCAPICT, in group DFHCICS, shows how
many such calls each transaction makes.) Once the QR TCB has reached a high
level of utilization, then adding more JVMs (on J8 and J9 TCBs) might produce no
further increase in the throughput of your CICS system. You can check your level of
QR TCB utilization by looking at the statistics field “Accum CPU Time / TCB” for the
QR mode in the CICS dispatcher TCB mode statistics (see [Dispatcher domain|
[TCB Mode statistics” on page 445).

Calculating the maximum number of JVMs for which storage can be

provided

If you have decided that your CICS region could benefit from an increase in the
number of JVMs, you now need to work out the maximum number of JVMs that
your CICS region could support. This maximum number can be calculated as:

free storage available in the CICS address space / storage needed per JVM

To determine the amount of free storage available in the CICS address space,
you can use the CICS-supplied sample statistics program DFHOSTAT. The Storage
Reports (see ['Storage Reports” on page 688) include the amount of user storage
allocated above and below the 16MB line. The same information can also be
obtained from the job termination message IEF374l. 'VIRT=nnnnnK' shows you the
virtual storage below 16MB, and 'EXT=nnnnnnnK ' shows you the virtual storage
above 16MB.

When you begin to use JVMs in the CICS region, two amounts of storage are
allocated:

1. The storage that is reserved for the z/OS shared library region. This storage is
allocated in each CICS region when the first JVM is started in the region. (This
might be the master JVM that initializes the shared class cache.) The amount of
storage is controlled by the SHRLIBRGNSIZE parameter in MVS. [Tuning the]
[z/OS shared library region” on page 313|tells you how to adjust this amount of
storage, if necessary.

2. The MVS storage cushion that CICS allocates to provide a buffer for storage
requests by JVMs. The storage cushion is pre-set by CICS at 20MB. This
storage is allocated in each CICS region when the first worker or standalone
JVM (not the master JVM) is started in the region.

If you measured the free storage available in a CICS address space when no JVMs
were present, you should subtract these amounts of storage from the total amount
of free storage available in the CICS address space.

If your CICS region includes a shared class cache, you also need to subtract the
storage required for the shared class cache facility, from the total amount of free
storage available in the CICS address space. Although there is only one active
shared class cache in a CICS region at any one time, the region might also need to
contain a new shared class cache that is being loaded to replace the existing
shared class cache, or old shared class caches that are still present in the region
because they are waiting for worker JVMs that are dependent on them to be
phased out. Each shared class cache, whether new, current or old, has its own
master JVM.

Chapter 20. Java applications using a Java virtual machine (JVM): improving performance 321

The activities that cause new or old shared class caches to be present in your
CICS region as well as the current shared class cache are:

* Changing the size or JVM profile for the shared class cache.
» Updating classes or JAR files in the shared class cache.

These activities are performed manually at your command, rather than being
performed automatically by CICS. In a production system that has been correctly
tuned, these activities are not likely to occur often, so it is not likely that the CICS
region would need to contain more than one new or old shared class cache in
addition to the current shared class cache. In these circumstances, you could allow
sufficient storage for two shared class caches and their master JVMs, subtracting
this from the total amount of free storage available in the address space. In a CICS
region that is being heavily used for development and testing, you might want to
allow sufficient storage for three shared class caches and their master JVMs, in
case changes must be made to the current shared class cache before all the
worker JVMs using an old shared class cache have been phased out.

The total amount of storage required for a shared class cache and its master JVM
can be calculated by adding together:

1. The size of the shared class cache. This is specified by the JYMCCSIZE
system initialization parameter, but it can be changed by various commands
while CICS is running, and the changed size can be kept across CICS restarts.
Issue the CEMT INQUIRE CLASSCACHE command to check the current size
that is specified for the shared class cache.

2. The amount of storage specified by the Xmx option in the JVM profile for the
master JVM. Xmx specifies the maximum total size for the transient and
middleware heaps, and because the master JVM is not used to run applications,
these heaps can be small. The value of Xmx in the CICS-supplied sample profile
for a master JVM, DFHJVMCC, is 4MB.

3. The basic JVM cost for a master JVM, which is 9MB.

For example, if you use the default value of 24MB for the JVMCCSIZE system
initialization parameter, and you use the default CICS-supplied sample profile
DFHJVMCC as the profile for your master JVM, the storage required for a shared
class cache and a master JVM in your CICS region is 24MB + 4MB + 9MB =
37MB. In a production system, this result would mean you should subtract 74MB of
storage (enough for two shared class caches and their master JVMs) from the free
storage available in the CICS address space, before calculating the number of
JVMs that the CICS region can support.

You can calculate the amount of storage needed per JVM from the storage heap

settings in your JVM profiles. Below the 16MB line, each additional JVM that is

started (regardless of its type) uses approximately 12KB of storage. Above the
16MB line, the amount of storage used for a JVM can be calculated by adding the
amount of storage specified by the Xmx option in the JVM profile (which specifies
the maximum total size for the transient and middleware heaps) to the basic
storage cost for the type of JVM, as follows:

* 10MB for a worker JVM (with the option CLASSCACHE=YES in its JVM profile).
Worker JVMs do not have their own system heap or application-class system
heap, so there is no need to consider these in your calculations. This basic cost
might vary slightly on different systems.

» 25MB for a standalone JVM (with the option CLASSCACHE=NO in its JVM
profile). This basic cost is only an approximate guide. Standalone JVMs have
their own system heap and application-class system heap, and the JVM does not
set a maximum size for these heaps. The estimate of 25MB includes a small

322 CICS TS for z/0S: CICS Performance Guide

system heap and application-class system heap, sufficient for the use of a simple
program. If you are using the JVM to run complex programs with a large number
of classes, you will probably need to increase the basic cost that you use for
your calculations in order to account for this. If you have tuned your JVMs
following the process described in[“Tuning storage for individual JVMs” on page|
you should have a better idea of the eventual size of your system heap and
application-class system heap for the workload expected in the JVM.
Alternatively, you can follow the process described in f‘Tuning Language|
[Environment enclave storage for JVMs” on page 310|to find the exact amount of
Language Environment enclave storage that is used by your JVMs.

If your CICS region contains JVMs that all use the same JVM profile, or specify the
same amount of storage for the Xmx option in their JVM profiles, the calculation is
straightforward. For example, if the JVMs in your CICS region are worker JVMs
using the same JVM profile, the maximum number of JVMs that your CICS region
can support is the lower of:

Available Virtual Storage < 16MB / 12k

or
Available Virtual Storage > 16MB / (1OMB + Xmx for worker JVM)

However, as described in [‘Tuning storage for individual JVMs” on page 302, your
applications might use several JVM profiles that specify different storage heap
sizes. In this case, to work out a better estimate of the number of JVMs that your
CICS region can support, you should take into account the proportions of each type
of JVM that would typically be in the JVM pool for your CICS region. When you
collect CICS statistics for JVM profiles (see[‘JVM profile statistics” on page 508),
you can see the Xmx option for each of the JVM profiles in use in your CICS region,
and the level of activity for each of those JVM profiles. You can use this information
to calculate the approximate amount of storage needed for an ‘average’ JVM in
your CICS region, based on the storage requirements of each type of JVM and their
relative levels of usage. A suggested method is as follows:

1. Use the sum basic JVM cost for JVM type + Xmx to calculate the amount of
storage needed for a JVM with each of the JVM profiles that are in use in your
CICS region, using the information in the field “-Xmx value for this profile”.

2. The field “Total number of requests for this profile” tells you how many times
each type of JVM was requested by an application during your sampling period,
and this should reflect the proportions of each type of JVM that would typically
be in the JVM pool. Multiply the total number of requests for each JVM profile,
by the storage requirement you have calculated for that profile.

3. Add together the results of Step 2 for all the JVM profiles, and then divide this
figure by the total number of requests for JVMs in the sampling period.

For example, take the case where:
* Two JVM profiles are used in your CICS region, Profile A and Profile B.

* You calculate the storage requirement for Profile A as 54MB, and the storage
requirement for Profile B as 70MB.

* In your sampling period, there were 300 requests for JVMs created with Profile A,
and 200 requests for JVMs created with Profile B.

Your final calculation would be:

(Prof A requests * Prof A storage) + (Prof B requests * Prof B storage)
/ Total JVM requests
which gives:
(300 = 54) + (200 = 70) / 500 = 60.4
The 'average' JVM in this CICS region needs approximately 60.4MB of storage.

Chapter 20. Java applications using a Java virtual machine (JVM): improving performance 323

You can divide the available virtual storage above the 16MB line in your CICS
region, by this ‘average’ JVM's storage requirement, to make an approximate
calculation of the maximum number of JVMs that your CICS region can support.
This estimate is based on the assumption that the use of each JVM profile by your
applications will remain similar to what it was during the sampling period, and so
the JVM pool will have a similar composition.

Choosing and setting an appropriate MAXJVMTCBS limit

Taking your findings about CPU usage and storage availability into account, you
can now choose and set an appropriate MAXJVMTCBS limit for the CICS region.

As explained in |Java Applications in CICSt the MAXJVMTCBS system initialization
parameter limits the total number of TCBs in the pool of J8- and J9-mode open
TCBs that CICS uses for JVMs. Each JVM executes on a J8 or J9 TCB, so
MAXJVMTCBS limits the number of JVMs that can be active in the CICS region.
The JM TCB, for the master JVM that initializes the shared class cache, does not
count towards the MAXJVMTCBS limit.

MAXJVMTCBS can be in the range 1 through 999. The default setting is 5. The
minimum permitted value is 1, meaning that CICS is always able to create at least
1 open TCB (in J8 or J9 mode) for use by a JVM.

[The CICS System Definition Guidg tells you how to specify the MAXJVMTCBS
system initialization parameter. You can also change the setting for MAXJVMTCBS
without restarting CICS, by using the CEMT SET DISPATCHER MAXJVMTCBS
command (see|CICS Supplied Transactions).

Dealing with warnings about MVS storage constraints

If you set a MAXJVMTCBS limit that is too high, CICS might attempt to create too
many JVMs for the available MVS storage, resulting in an MVS storage constraint.

CICS has a storage monitor for MVS storage, which notifies it when MVS storage is
constrained or severely constrained, so that it can take short-term action to reduce
the number of JVMs in the JVM pool. (The storage monitor uses exits in Language
Environment routines; it is not a monitoring transaction.) As JVMs make requests
for MVS storage, the storage monitor checks whether the availability of MVS
storage has dropped below a pre-set threshold of 40MB, and notifies CICS when
this is the case. At this point, operator message DFHSMO0137 informs you that MVS
storage is constrained. The storage monitor also notifies CICS if the availability of
MVS storage has become so low that MVS storage requests can only be satisfied
from a pre-set MVS storage cushion of 20MB. At this point, operator message
DFHSMO0139 informs you that MVS storage is severely constrained (a
short-on-storage situation). CICS also produces statistics for time spent in waits
because of MVS storage constraints (in the Storage Above 16MB report).

Once CICS has been notified that MVS storage is constrained or severely
constrained, the actions it takes, depending on the seriousness of the situation, are
as follows:

* When MVS storage is constrained, CICS deletes JVMs in the JVM pool that are

not currently in use, together with their TCBs. However, new JVMs can still be
created for incoming requests.

* When MVS storage is severely constrained, CICS temporarily prevents the
creation of new JVMs for incoming requests, and behaves as though the
MAXJVMTCBS limit has been reached and the JVM pool is full. CICS then

324 CICS TS for z/0S: CICS Performance Guide

terminates all JVMs as soon as they finish running their current Java programs. If
limited MVS storage is available, and the storage monitor is still receiving
requests from CICS to create JVMs, it queues any such requests that cannot
obtain sufficient MVS storage.

When CICS manages to reduce its use of MVS storage by these methods, and the
availability of MVS storage has risen above the pre-set MVS storage cushion or the
pre-set threshold, the storage monitor informs CICS that it can return to normal
operation. As CICS returns to normal operation, operator messages DFHSM0138 or
DFHSMO0140 inform you when MVS storage is no longer constrained or severely
constrained.

When you receive operator messages relating to an MVS storage constraint, or see
in statistics reports that time has been spent in waits caused by MVS storage
constraints, you should examine why the MVS storage constraint occurred, and
take steps to prevent a recurrence. The likely cause of the MVS storage constraint
is that the MAXJVMTCBS limit for your CICS region is set at too high a level,
considering the amount of storage that is needed by your JVMs, and the amount of
MVS storage that you have available. In this situation, you should:

» Check that the storage heap settings in your JVM profiles are not too high,
particularly the Xmx option, which defines the maximum total size for the transient
and middleware heaps. The Xmx option for each of the JVM profiles in use in your
CICS region is displayed when you collect statistics for JVM profiles.
[storage for individual JVMs” on page 302]tells you how to change these settings.

* Check whether you have a problem with high peak usage of a particular JVM
profile. If so, you could consider using the technique described in
[excessive mismatches and steals’| to limit the number of transactions that request
a JVM with that profile. This involves defining the transactions which execute
JVM programs requiring that JVM profile, in the same transaction class
(TRANCLASS), and placing a limit on that transaction class.

* Re-calculate the number of JVMs that your CICS region can support with the
amount of storage that it has available. [‘Calculating the maximum number of]
[JVMs for which storage can be provided” on page 321 tells you how to do this.
Adjust the MAXJVMTCBS limit accordingly.

Dealing with excessive mismatches and steals

['How CICS allocates JVMs to applications" in Java Applications in CICSY explains
how CICS assigns JVMs to applications, and tries to avoid mismatches and steals
wherever it makes sense to do so.

To summarize, when an application requests a JVM, CICS first tries to find a
suitable JVM that is available for reuse in the JVM pool. If a suitable JVM, with the
correct JVM profile and execution key, is not available, and the MAXJVMTCBS limit
for the JVM pool has not yet been reached, CICS can create a new JVM for the
application.

If there are no suitable JVMs and no space in the JVM pool, CICS can fulfil an
application’s request for a JVM by destroying and re-initializing an available JVM
that had the wrong execution key or profile for the request. This is called a
mismatch if the JVM is destroyed and re-initialized but the TCB is kept and
re-used, and a steal if both the JVM and the TCB are destroyed and replaced
(because the TCB has been “stolen” from one TCB mode (J8 or J9) by another
TCB mode). Before allowing a mismatch or a steal, CICS uses its selection
mechanism to decide whether it is worthwhile, or whether it is more economical to

Chapter 20. Java applications using a Java virtual machine (JVM): improving performance 325

make the application wait until a suitable JVM is available, and to keep the free
JVM for a request that can benefit more from it.

The selection mechanism is designed to avoid excessive mismatches and steals,
while ensuring that no application waits too long to receive a JVM. CICS should
normally be able to maintain an appropriate balance between the different types of
JVM in the JVM pool, without operator intervention. However, you might
occasionally want to limit the numbers of a certain type of JVM, if you are not
satisfied with the measures CICS is taking to avoid mismatches and steals for that
type of JVM. For example, take the case where a certain transaction specifies a
JVM profile that is not used by other transactions. If the transaction is relatively
unimportant, you might prefer to have only one JVM of that type in the JVM pool to
service those requests, and make further requests queue if that JVM is not
available. However, you might find that the requests are waiting longer than the
critical period that is defined by CICS, and so CICS is giving the requests free
JVMs with the wrong profile or execution key, and causing a mismatch or a steal.

You can use the CICS statistics to see if the incidence of mismatches and steals in
the JVM pool is greater than you would like. In the CICS dispatcher TCB mode
statistics (see [‘Dispatcher domain: TCB Mode statistics” on page 445), the statistics
fields “TCB Mismatches” and “TCB Steals”, for the TCB modes J8 and J9, show the
overall incidence of mismatches and steals in the JVM pool. In the CICS statistics
for JVM profiles (see ['JVM profile statistics” on page 506), the field “Number of
times this profile stole a TCB” shows the combined incidence of both mismatches
and steals for each JVM profile.

You cannot specify the number of JVMs with each JVM profile that CICS keeps in
the JVM pool. However, you can indirectly limit the number of JVMs with a
particular JVM profile, by limiting the number of transactions that request a JVM
with that profile. To do this, define the transactions which execute JVM programs
requiring that JVM profile, in the same transaction class (TRANCLASS). Assign a
MAXACTIVE value to the TRANCLASS. This limits the number of concurrent
executions of JVM programs requiring that JVM profile, and so limits the maximum
number of JVMs with that JVM profile that will be in the JVM pool at any one time.

As an alternative, you could attempt to reduce the number of different JVM profiles
that are used by your CICS region. The fewer the number of JVM types you have,
the more chance there is of an existing JVM matching an application's request, and
so the incidence of mismatches and steals should be reduced. Check that all your
JVM profiles and their associated JVM properties files do actually specify different
options, and investigate whether you could combine compatible options in different
JVM profiles to create a single JVM profile. For example, if you found two
infrequently-used JVM profiles that contained similar options, but one specified a
larger storage heap size, you could consider combining these into a single JVM
profile that specified the larger storage heap size. This would mean that some
applications would be using an unnecessarily large JVM, but the reduction in the
incidence of mismatches and steals might make this worthwhile. ['Setting up JVM|
profiles and JVM properties files" in Java Applications in CICS|tells you how to work
with JVM profiles and JVM properties files.

Tuning for enterprise beans

If you are using enterprise beans in your CICS system, this tuning information might
help:

326 CICS TS for z/0S: CICS Performance Guide

* Heavy usage of enterprise beans might mean that you need to increase the size
of the EJB Object Store, DFHEJOS. [‘Customizing DFHEJOS for your anticipated|
[stateful enterprise bean usage’] explains how.

* The use of client-controlled OTS (object transaction service) transactions might
affect your requirements for JVMs. |“Enterprise beans that are involved in|
|c|ient-control|ed OTS (object transaction service) transactions’ explains what to
look out for.

* The use of more than one request processor by a single enterprise bean method
can lead to deadlocks.|“Enterprise bean methods that require multiple requestl
tells you how to remove this possibility.

Customizing DFHEJOS for your anticipated stateful enterprise bean
usage

The EJB Object Store, DFHEJOS, is a file used to store stateful session beans that
have been passivated. It can be a VSAM file or a coupling facility data table. CICS

supplies sample JCL to help you create this file, in the DFHDEFDS member of the

SDFHINST library.

The CICS-supplied settings for DFHEJOS are designed for storage of a low number
of objects (passivated beans), with a maximum size of 8K, to minimize storage
wastage. If you anticipate heavy usage of stateful enterprise beans, increase the
space allocations and record sizes for this data set.

[The CICS System Definition Guidd describes how to create DFHEJOS. To work out
appropriate settings for the record sizes, follow the procedure described in
['Determining the object store space requirements'

Enterprise beans that are involved in client-controlled OTS (object
transaction service) transactions

The use of client-controlled OTS (object transaction service) transactions can affect
your JVM requirements.

The typical enterprise bean workload in CICS begins with an incoming 11OP
message, containing a GIOP request that is received by an IIOP listener task in
CICS. The request is passed to a request receiver task, that examines the GIOP
message and passes processing of the message to a request processor task.
Finally, on completion of the request processor task, a response is sent back to the
requesting client by the request receiver task.

If the GIOP request forms part of a client-controlled OTS transaction, then the
request processor and request receiver tasks are not ended until the OTS
transaction is committed or rolled back. Because the request processor task is
executing in a JVM, that JVM is not available for any other task to use until the
OTS transaction has ended. If this happens frequently, you might need to increase
the number of JVMs in your JVM pool to avoid excessive waiting times for incoming
requests.

Enterprise bean methods that require multiple request processors

If a single execution of an enterprise bean method requires more than one request
processor, your application could experience deadlock problems. (A method can be
said to “require more than one request processor” if it calls one or more other,
typically remote, methods, each of which must execute in a different request
processor.) Deadlocks can be caused by all the request processors required to

Chapter 20. Java applications using a Java virtual machine (JVM): improving performance 327

satisfy the method being forced to wait for a JVM when no more JVMs are
permitted. This can occur for two reasons:

1. In the simple case, the maximum number of JVMs allowed to exist concurrently
under CICS (MAXJVMTCBS) is smaller than the number of request processors
required to service the method request.

2. In the complex case:
» CICS is processing multiple requests simultaneously.
» All the requests are waiting for another JVM.
e All the permitted JVMs are currently in use.

Avoiding the simple case is easy; avoiding the complex case is more difficult. It is
necessary to ensure there are always enough free JVMs to allow at least one
method’s requirement of request processor instances to be satisfied.

The maximum number of concurrent JVMs available to a bean method is set by the
MAXACTIVE attribute of the TRANCLASS definition that applies to the request
processor transaction. The maximum number of concurrent JVMs available to CICS
is set by the MAXJVMTCBS system initialization parameter.

To remove the possibility of deadlocks caused by bean methods that use multiple
request processors:

1. Wherever it is consistent with your applications’ requirements, try to minimize
the number of request processors each method requires, preferably to one. If
you can reduce the requirements of all methods, in all applications, to one
request processor, you need do no more.

2. If it is not possible to reduce the requirements of all methods to one request
processor, discover which is your “worst case”™—that is, the bean method that
requires the most request processors in order to be satisfied.

3. Create a new TRANCLASS definition. This transaction class will apply to the
request processor transaction under which bean methods that require multiple
request processors will run.

4. On the TRANCLASS definition, set the value of MAXACTIVE using the following
formula:

MAXACTIVE <= ((MAXJVMTCBS - n) / (n - 1)) + 1

where n is the maximum number of request processors required by your “worst
case” method.

If the result of this calculation is a decimal value, round it down to the nearest
(lower) whole number.

5. Create new TRANSACTION and REQUESTMODEL definitions:

a. Create a new TRANSACTION definition for the request processor
transaction under which bean methods that require multiple request
processors will run. (The easiest way to do this is to copy the definition of
the default CIRP request processor transaction and modify it.) On the
TRANCLASS option, specify the name of your new transaction class.

b. Create one or more REQUESTMODEL definitions. Between them, your new
REQUESTMODEL definitions must cover all requests that may be received
for bean methods that require multiple request processors. On the TRANSID
option of the REQUESTMODEL definitions, specify the name of your new
transaction.

328 CICS TS for z/0S: CICS Performance Guide

Chapter 21. Database management for performance

This section includes the following topics:

+ [‘Setting DBCTL minimum threads (MINTHRD)’|

[‘Setting DBCTL maximum threads (MAXTHRD)” on page 330

[‘Defining DBCTL DEDB parameters (CNBA, FPBUF, FPBOF)” on page 330
[Tuning the CICS DB2 attachment facility: Introduction” on page 332

« [“Specifying THREADWAIT for the CICS DB2 attachment facility” on page 334

« [“Setting TCBLIMIT, THREADLIMIT, CTHREAD and MAXOPENTCBS for the|
CICS DB2 attachment facility” on page 335|

* |“Specifying PRIORITY for the CICS DB2 attachment facility” on page 336
» |“Selecting authorization IDs for performance and maintenance” on page 337|

Setting DBCTL minimum threads (MINTHRD)

Effects

Where useful

This parameter specifies the number of threads that are created when CICS
connects to DBCTL. They remain allocated while the database resource adapter
(DRA) is active. These threads continue to remain allocated until the CICS system
is disconnected from DBCTL, unless a thread is stopped by a /STOP command or
by a thread failure.

The DRA allocates control blocks for the specified number of threads at DBCTL
connection time. One thread is equivalent to one MVS TCB, thus giving more
concurrency on multiprocessors. Because these threads are available for the
duration of the DBCTL connection, there is no pathlength overhead for collapsing
and reallocating thread related storage, and throughput should, therefore, be faster.

The number you specify should be large enough to cover average DL/I transaction
loads. After the MINTHRD limit is reached, additional threads are allocated up to
the MAXTHRD limit, the number specified in the MAXREGN, or the maximum of
255, whichever is the lowest.

When multiple CICS systems or Batch message processing programs (BMPs) are
connected to DBCTL, the sum of MINTHRD and BMPs must be less than or equal
to MAXREGN (MAXREGN is specified in the IMS sysgen macros).

MINTHRD can be used in DBCTL systems to synchronize thread allocation with
workload requirements.

Limitations
There is a storage allocation of about 9KB per thread in the local system queue
area (LSQA) below the 16MB line.

Implementation

The MINTHRD and MAXTHRD parameters are specified in the DRA startup table
(DFSPZP).

© Copyright IBM Corp. 1983, 2011 329

How monitored

DBCTL statistics are available when the CICS/DBCTL interface is shut down
normally. The MINTHRD value is recorded (see[DBCTL session termination|
istatistics” on page 439 for further information). You can also use CICS auxiliary
trace to check for queueing for threads and PSBs.

Setting DBCTL maximum threads (MAXTHRD)

The MAXTHRD parameter specifies the maximum number of threads that this CICS
system may use up to a value of 255, or the limit imposed by MAXREGN. The
default is 1 or the number defined by MINTHRD, whichever is the highest.

Effects

This parameter controls the maximum number of tasks for which this CICS system
can have PSBs scheduled in DBCTL. Any requests to schedule a PSB when the
MAXTHRD limit is reached is queued by the DRA.

Where useful
MAXTHRD can be used in DBCTL systems to ensure that, at peak loads, additional

threads can be built in addition to those already allocated as a result of MINTHRD,
thus avoiding waiting for threads.

Limitations
After the MINTHRD limit is exceeded, threads continue to be built up to the
MAXTHRD limit but, because each thread’s control blocks are allocated during PSB
scheduling, the pathlength is greater for the tasks running after the MINTHRD limit
has been reached.

Implementation

The MINTHRD and MAXTHRD parameters are specified in the DRA startup table
(DFSPZP).

How monitored

DBCTL statistics are available when the CICS/DBCTL interface is shut down
normally. The MAXTHRD value is recorded (see ['DBCTL session termination]|
Istatistics” on page 439 for further information). You can also use CICS auxiliary
trace to check for queueing for threads and PSBs.

Defining DBCTL DEDB parameters (CNBA, FPBUF, FPBOF)

Because DEDB parameters are defined both in the CICS region and the IMS/ESA
(DBCTL) region, both sets of interdependent parameters are included here.

If you use DEDBs, you must define the characteristics and usage of the IMS/ESA
DEDB buffer pool. You do this by specifying parameters (including DRA startup
parameters) during IMS/ESA system definition or execution.

The main concerns in defining DEDB buffer pools are the total number of buffers in
the IMS/ESA region, and how they are shared by CICS threads. You use the
following IMS/ESA FPCTRL parameters to define the number of buffers:

« DBBF: total number of buffers
* DBFX: number of buffers used exclusively by the DEDB system.

330 CICS TS for z/0S: CICS Performance Guide

Where useful

The number remaining when you subtract the value specified for DBFX from the
value specified for DBBF is the number of buffers available for the needs of CICS
threads. In this discussion, we have assumed a fixed number for DBFX. DBBF
must, therefore, be large enough to accommodate all batch message processing
programs (BMPs) and CICS systems that you want to connect to this DBCTL
system.

When a CICS thread connects to IMS/ESA, its DEDB buffer requirements are
specified using a normal buffer allocation (NBA) parameter. For a CICS system,
there are two NBA parameters in the DRA startup table:

1. CNBA buffers needed for the CICS system. This is taken from the total specified
in DBBF.

2. FPBUF buffers to be given to each CICS thread. This is taken from the number
specified in CNBA. FPBUF is used for each thread that requests DEDB
resources, and so should be large enough to handle the requirements of any
application that can run in the CICS system.

A CICS system may fail to connect to DBCTL if its CNBA value is more than that
available from DBBF. An application may receive schedule failure if the FPBUF
value is more than that available from CNBA. The FPBUF value is used when an
application tries to schedule a PSB that contains DEDBs.

When a CICS system has connected to DBCTL successfully, and the application
has successfully scheduled a PSB containing DEDBs, the DRA startup parameter
FPBOF becomes relevant. FPBOF specifies the number of overflow buffers each
thread gets if it exceeds FPBUF. These buffers are not taken from CNBA. Instead,
they are buffers that are serially shared by all CICS applications or other dependent
regions that are currently exceeding their normal buffer allocation (NBA) allocation.

Because overflow buffer allocation (OBA) usage is serialized, thread performance
can be affected by NBA and OBA specifications. If FPBUF is too small, more
applications need to use OBA, which may cause delays due to contention. If both
NBA and OBA are too small, the application fails. If FPBUF is too large, this affects
the number of threads that can concurrently access DEDB resources, and
increases the number of schedule failures.

The DBCTL DEDB parameters are useful in tuning a CICS/DBCTL DEDB fastpath
environment.

Recommendations

In a CICS/DBCTL environment, the main performance concern is the trade-off
between speed and concurrency. The size of this trade-off is dictated by the kind of
applications you are running in the CICS system.

If the applications have approximately the same NBA requirements, there is no
trade-off. You can specify an FPBUF large enough to never need OBA. This speeds
up access and there is no waste of buffers in CNBA, thus enabling a larger number
of concurrent threads using DEDBs.

The more the buffer requirements of your applications vary, the greater the

trade-off. If you want to maintain speed of access (because OBAs are not being
used) but decrease concurrency, you should increase the value of FPBUF. If you

Chapter 21. Database management for performance 331

prefer to maintain concurrency, do not increase the value of FPBUF. However,
speed of access decreases because this and possibly other threads may need to
use the OBA function.

For further guidance on DEDB buffer specification and tuning, see the information
on DEDBs in the IMS/ESA Database Administration Guide, and the IMS/ESA
System Administration Guide.

How implemented
DBBF and DBFX are parameters defined during DBCTL system generation or at
DBCTL initialization. CNBA, FPBUF, and FPBOF are defined in the DRA startup
table (DFSPZP).

How monitored

Monitoring data at the transaction level is returned to CICS by DBCTL at schedule
end and transaction termination. This data includes information on DEDB statistics.

Note: To obtain the monitoring data, two event monitoring points (EMPs) must be
added to your CICS monitoring control table (MCT). For information about
coding the DBCTL EMPs, see [CICS Customization Guide

Tuning the CICS DB2 attachment facility: Introduction

For information on tuning DB2 tables and the DB2 subsystem, and for general
considerations when tuning a DB2 application, see the DB2 Universal Database™
for OS/390 and z/OS Administration Guide.

The CICS DB2 attachment facility provides a multithread connection to DB2. The
connections between CICS and DB2 are called threads. There are three types of
thread:

Command threads
Command threads are reserved by the CICS DB2 attachment facility for
issuing commands to DB2 using the DSNC transaction. They are not used
for commands acting on the CICS DB2 attachment facility itself, because
these commands are not passed to DB2. When a command thread is not
available, commands automatically overflow to the pool, and use a pool
thread.

Entry threads
Entry threads are specially defined threads intended for transactions with
special requirements, such as high priority transactions or transactions with
special accounting needs. Each thread is associated with a particular
application plan, and the threads are reusable. If a transaction is permitted
to use an entry thread, but no suitable entry thread is available, the
transaction overflows to the pool and uses a pool thread.

Entry threads can be defined as protected. When an entry thread is
released, if it is protected, it is not terminated immediately. It is kept for a
period of time, and if another CICS transaction needs the same type of
entry thread during that period, it is reused. This avoids the overhead
involved in creating and terminating the thread for each transaction. Entry
threads are terminated after two consecutive periods of inactivity. These
periods are defined in the DB2CONN parameter, PURGECYCLE. An entry
thread that is unprotected is terminated immediately, unless a CICS
transaction is waiting to use it the moment it is released.

332 CICS TS for 2/0S: CICS Performance Guide

Pool threads
Pool threads are used for all transactions and commands that are not using
an entry thread or a DB2 command thread. Pool threads are intended for
low volume transactions, and for overflow transactions that could not obtain
an entry thread or a DB2 command thread. A pool thread is terminated
immediately if no CICS transaction is waiting to use it.

The DB2CONN, DB2ENTRY, and DB2TRAN definitions of the CICS DB2
attachment facility define the authorization and access attributes on a transaction
and transaction group basis.

When tuning the CICS DB2 attachment facility, you must understand the underlying
architecture. See [CICS DB2 Guidg for more information.

[CICS DB2 Guidd explains the recommendations for defining the CICS DB2
connection for optimum performance. |CICS DB2 Guidel has recommendations for
application design, and|CICS DB2 Guide|has recommendations for tuning CICS
DB2 applications.

In summary, the objectives in tuning the CICS attachment facility are to:
» Optimize the number of threads in the connection.

The total number of threads in the connection, and the number of threads for
each dedicated entry and the pool must be optimized. A larger number of threads
than is needed requires additional processor time to dispatch the TCBs and
additional storage for plans, data, and control blocks. If an insufficient number of
threads is defined, response time increases.

* Optimize the assignment and reuse of threads.

Reusing threads avoids the thread creation and termination process, including
plan allocation and authorization checks. Thread creation and termination
represent a significant part of the processing time for a simple transaction.
Thread reuse can be measured using CICS DB2 statistics.

Limit conversational transactions either through transaction classes or by using a
dedicated DB2ENTRY (THREADLIMIT greater than 0) with THREADWAIT=YES
specified. Otherwise, they tie up the pool. Do not allow conversational
transactions to use the pool.

» Choose the priority assigned to the subtask thread TCBs, using the PRIORITY
parameter.

» Choose the best authorization strategy to avoid or minimize the process of
signon by each thread.

* Minimize the number of DB2ENTRYs. Use wildcarding and dynamic plan
selection where relevant to combine appropriate transactions in an entry. Allow
low use transactions to default to the pool. However, it should be noted that
defining transaction IDs using wildcard characters removes the ability to collect
CICS DB2 statistics on a per transaction basis as statistics are collected for each
DB2ENTRY which will now represent a group of transactions.

You can optimize performance between CICS and DB2 by adjusting the transaction

class limits, MXT system parameters of CICS, and the THREADWAIT, TCBLIMIT,
THREADLIMIT, and PRIORITY attributes of DB2CONN and DB2ENTRY.

How monitored
The following facilities are available to monitor the CICS DB2 attachment facility.

Chapter 21. Database management for performance 333

» The CICS auxiliary trace facility and the CICS monitoring facility may be used to
trace and monitor the SQL calls issued by a specific CICS application program.

* The CICS DB2 attachment facility command (DSNC DISPLAY) provides
information about CICS transactions accessing DB2 data, or statistical
information associated with entries in resource definition online.

« There are various DB2 facilities which can be used. (See the DB2 Administration
Guide for more information.)

* The sample statistics program DFHOSTAT can be used to display the statistical
information associated with the DB2 connection and DB2 entry resource
definitions.

The CICS performance class monitoring records include the following DB2-related
data fields:

* The total number of DB2 EXEC SQL and instrumentation facility interface (IFI)
requests issued by a transaction.

* The elapsed time the transaction waited for a DB2 thread to become available.

* The elapsed time the transaction waited for a CICS DB2 subtask to become
available.

* The elapsed time the transaction waited for DB2 to service the DB2 requests
issued by the transaction.

CICS monitoring is used in the CICS DB2 environment with the DB2 accounting
facility, to monitor performance and to collect accounting information.

Specifying THREADWAIT for the CICS DB2 attachment facility

Effects

Where useful

The THREADWAIT parameter of DB2CONN and DB2ENTRY defines whether the
requests for a thread should be queued, abended, or sent to the pool thread in the
case of a shortage of entry or command threads. If THREADWAIT=YES is specified
instead of THREADWAIT=POOL the transaction is queued rather than sent to the
pool thread.

Using THREADWAIT=YES avoids the thread initialization and termination overhead.
If a transaction is made to wait because of the lack of entry threads, a queueing
arrangement is necessary. This is done by the CICS DB2 attachment facility. The
advantages of this are that, once the entry thread finishes its current piece of work,
it continues with the next transaction immediately.

In a high-volume, highly-utilized system using DB2.

How implemented

THREADWAIT is defined in the DB2CONN and DB2ENTRY definitions of the CICS
DB2 attachment facility.

How monitored

The following facilities are available to monitor the CICS DB2 attachment facility.

* The CICS auxiliary trace facility and the CICS monitoring facility may be used to
trace and monitor the SQL calls issued by a specific CICS application program.

334 CICS TS for z/0S: CICS Performance Guide

* The CICS DB2 attachment facility command (DSNC DISPLAY) provides
information about CICS transactions accessing DB2 data, or statistical
information associated with attributes of DB2CONN, and DB2ENTRY.

» The sample statistics program DFHOSTAT can be used to display the statistical
information associated with the DB2 connection and DB2 entry resource
definitions.

* There are also various DB2 facilities which can be used. (See the DB2
Administration Guide for more information.)

Setting TCBLIMIT, THREADLIMIT, CTHREAD and MAXOPENTCBS for
the CICS DB2 attachment facility

Effect

Limitations

TCBLIMIT and THREADLIMIT are parameters in the DB2CONN and DB2ENTRY
resource definitions. They can be set for each of the three types of thread (see
pagefor more information). TCBLIMIT specifies the maximum number of TCBs
that can be used to run DB2 threads, which, in turn, limits the maximum number of
active DB2 threads. THREADLIMIT specifies the maximum number of active DB2
threads. THREADLIMIT is modified dynamically.

The sum of all the active threads from TSO users, all CICS and IMS systems and
other systems accessing DB2 should not exceed CTHREAD.(CTHREAD is a DB2
parameter, specified in ZPARMS, and it defines the number of concurrent threads
for all of DB2.) Otherwise, the result could be unpredictable response times. When
this occurs, a CICS DB2 attachment facility “create thread” request is queued by
DB2, and the CICS transaction is placed is a wait state until a thread is available.

The MAXOPENTCBS system initialization parameter controls the total number of L8
mode TCBs that the CICS region can have in operation at any one time. It is
relevant when CICS is connected to DB2 Version 6 or later, when open TCBs are
used to run threads into DB2. In the open transaction environment (when CICS is
connected to DB2 Version 6 or later), TCBLIMIT controls how many of the L8 mode
open TCBs can be used by the CICS DB2 task-related user exit to run threads into
DB2. If MAXOPENTCBS is reached, no more open TCBs are allowed in the CICS
region, and the CICS DB2 task-related user exit cannot obtain an open TCB for its
use.

To ensure that you have enough open TCBs available to meet your DB2 workload,
see [‘Setting MAXOPENTCBS” on page 262

Each thread linking CICS to DB2 has a corresponding TCB in the CICS address
space. Too many TCBs per address space involve the MVS dispatcher scanning the
TCBs to identify an active TCB. If there is a large number of TCBs then there may
be a significant cost of processor time. However, if you have too few TCBs
available to meet your DB2 workload, transactions must wait to obtain a TCB.

Increasing the TCBLIMIT value or setting up an additional CICS system with access
to the same DB2 system may require increasing the CTHREAD parameter of DB2.

Chapter 21. Database management for performance 335

Recommendations

For a protected entry thread environment, implementation involves reviewing the
number of application plans and, if possible, reducing the number of plans by
combining infrequently used ones while balancing the issues of plan size and
security.

Initially, you should start with one thread per plan. In a high-volume transaction
processing environment, you can estimate the initial number by using the
occupancy time of a thread by a transaction and multiplying it with the expected
transaction rate. For example, an occupancy time of 0.2 seconds and a transaction
rate of 20 transactions per second (0.2 x 20) would give an initial thread number of
between three and four.

How monitored

The following facilities are available to monitor the CICS DB2 attachment facility.

» The CICS auxiliary trace facility and the CICS monitoring facility may be used to
trace and monitor the SQL calls issued by a specific CICS application program.
* The CICS DB2 attachment facility command (DSNC DISPLAY) provides

information about CICS transactions accessing DB2 data, or statistical
information associated with attributes of DB2CONN, and DB2ENTRY.

* The sample statistics program DFHOSTAT can be used to display the statistical
information associated with the DB2 connection and DB2 entry resource
definitions.

* There are also various DB2 facilities which can be used. (See the DB2
Administration Guide for more information.)

Specifying PRIORITY for the CICS DB2 attachment facility

Effects

Where useful

Limitations

PRIORITY is a parameter of the DB2CONN and DB2ENTRY definitions of the
CICS-DB2 attachment facility. It can be specified for both pool and entry threads.
The PRIORITY parameter controls the priority of the thread TCBs relative to the
CICS main TCB (QR TCB). If CICS is connected to DB2 Version 6 or later, the
thread TCBs are CICS open L8 TCBs. If CICS is connected to DB2 Version 5 or
earlier, the thread TCBs are private subtask TCBs created by the CICS-DB2
attachment facility. There are three options: PRIORITY=HIGH, PRIORITY=LOW,
and PRIORITY=EQUAL. (See [the CICS Resource Definition Guide for more
information.)

When PRIORITY=HIGH is specified, transactions run at a higher priority than CICS,
thus saving virtual storage, releasing locks, and avoiding other transactions
deadlocking or timing out. However, if all threads are specified with
PRIORITY=HIGH, CICS itself may be effectively at too low a priority.

Setting PRIORITY=HIGH is useful for high-priority and high-volume transactions.

A complex SQL call could spend a long time in DB2, and the CICS TCB may not be
dispatched.

336 CICS TS for z/0S: CICS Performance Guide

Recommendations
Set PRIORITY=HIGH for your transactions with the highest weighted average
number of SQL calls. The highest weighted average is equal to the number of SQL
calls per transaction multiplied by the frequency of transaction. Set
PRIORITY=LOW or EQUAL for other transactions. If the CPU usage per call is
high, you should not set PRIORITY=HIGH.

How implemented

PRIORITY is a parameter of the DB2CONN and DB2ENTRY definitions of the CICS
attachment facility.

How monitored
The following facilities are available to monitor CICS attachment facility.
» The CICS auxiliary trace facility and the CICS monitoring facility may be used to
trace and monitor the SQL calls issued by a specific CICS application program.
* The CICS attachment facility command (DSNC DISPLAY) provides information

about CICS transactions accessing DB2 data, or statistical information associated
with DB2 resource definitions in the CSD.

* The sample statistics program DFHOSTAT can be used to display the statistical
information associated with the DB2 connection and DB2 entry resource
definitions.

» There are also various DB2 facilities which can be used. (See the DB2
Administration Guide for more information.)

Selecting authorization IDs for performance and maintenance

A process that connects to or signs on to DB2 must provide one or more DB2 short
identifiers, called authorization IDs, that can be used for security checking in the
DB2 address space. Every process must provide a primary authorization ID, and it
can optionally provide one or more secondary authorization IDs. CICS transactions
that acquire a thread into DB2 are considered as processes, and must provide
authorization IDs.

[The CICS DB2 Guideltells you how to choose and set up the authorization IDs that
a CICS transaction passes to DB2 when the thread used by the transaction signs
on to DB2. The authorization IDs for a transaction are determined by attributes in
the resource definition for the thread that the transaction uses. For entry threads,
this is the DB2ENTRY definition, and for pool threads or command threads, this is
the DB2CONN definition.

When choosing the type of authorization ID that a CICS transaction will use, you
should take into account the performance and maintenance considerations noted in
this topic.

Performance considerations for authorization IDs

From the point of view of performance, choosing one of the options USERID, OPID,
TERM, TX or GROUP on the AUTHTYPE attribute means that any CICS
transaction using a DB2 thread is likely to have a different authorization ID from the
last transaction that used the thread. This causes sign-on processing to occur.
Choosing the SIGN option, or using the AUTHID attribute instead of the AUTHTYPE
attribute, means that CICS transactions will have the same authorization ID. If the
transactions using a thread have the same authorization ID, sign-on processing can
be bypassed.

Chapter 21. Database management for performance 337

However, although the options USERID, OPID, TERM, TX or GROUP have
disadvantages for performance, they make DB2's security checking more granular.
For example, if a transaction's thread is defined with AUTHTYPE(USERID), DB2's
security checking uses the CICS user ID of the individual that is using the
transaction. If a transaction's thread is defined with AUTHTYPE(SIGN), DB2's
security checking uses the SIGNID that has been defined for the whole CICS
region, so DB2 is only checking that the CICS region is permitted to access DB2
resources. If you do use one of the options that gives the same authorization ID for
all transactions, you should use CICS transaction-attach security to restrict access
to transactions (see |"Contro||ing users' access to DB2-related CICS transactions" in|
the CICS DB2 Guide).

An alternative solution for plans is to use a GRANT command in DB2 to give
EXECUTE authority on a plan to PUBLIC, because this also causes sign-on
processing to be bypassed. DB2 ignores the changed authorization ID. This is not
quite as efficient as using a constant authorization ID and transaction id, because
some processing still takes place in the CICS DB2 attachment facility. Security
considerations for your DB2 subsystem could prevent the use of this solution, as it
allows no security checking for the plan within DB2.

Maintenance considerations for authorization IDs

From the point of view of maintenance, when you use the options USERID, OPID,
TERM, TX or GROUP for authorization IDs, you need to grant permissions in DB2
to a greater number of authorization IDs. For example, if a CICS transaction
executes a plan in DB2, and the transaction's thread is defined with
AUTHTYPE(USERID), you need to grant permission to use the plan in DB2 to all
the CICS user IDs of individuals who can use the transaction. If you use the SIGN
option, or use the AUTHID attribute instead of the AUTHTYPE attribute, you need to
grant permissions to fewer authorization IDs.

However, as already mentioned, using a limited range of authorization IDs makes
DB2's own security checking less granular. If your priority is security, but you are
concerned about high levels of maintenance in your DB2 system, a possible
solution is to set up secondary authorization IDs for CICS users. ["Providing
lsecondary authorization IDs for CICS transactions" in the CICS DB2 Guidd tells you
how to do this. You can create a RACF group, and connect your CICS users to this
RACF group. Use the GROUP attribute of the DB2ENTRY definition for the thread
used by the transaction, so that the RACF group is one of the secondary IDs that is
passed to DB2. Then grant DB2 permissions to the RACF group. To remove a
CICS user's DB2 permissions, disconnect them from the RACF group. If you use
this solution, DB2's security checking can ensure that individual CICS users are
authorized to access resources within DB2, but you do not have to specifically grant
permission to each CICS user ID.

338 CICS TS for z/0S: CICS Performance Guide

HoH H H O H H HF HH OHHHH OHH

Chapter 22. Logging and journaling: performance
considerations

This chapter discusses performance tuning issues related to logging and journaling:
« [*Monitoring the logger environment” on page 340
+ [‘Performance implications of average blocksize” on page 341|

« [‘Performance implications of the number of log streams in the coupling facility|
structure” on page 342|

+ [“Setting LOWOFFLOAD and HIGHOFFLOAD parameters on log stream|
definition” on page 344

+ [‘Tuning the size of staging data sets” on page 346)

. :“Setting the activity keypoint frequency (AKPFREQ)” on page 347|

. :“Specifying the log defer interval (LGDFINT)” on page 349|

. “‘Tuning for DASD-only logging” on page 350|

The CICS log manager supports the DASD-only option of the MVS system logger.
This means that individual CICS log streams can use either coupling facility log

structures or DASD-only logging. (For more information about the types of storage
used by CICS log streams, see[the CICS Transaction Server for z/OS Installatior]

Guidd)

If you have a coupling facility, |the CICS Transaction Server for z/0OS /nsta//ation|
contains advice on how you could define each log stream, based on its
usage. For information about the relative performance of coupling facility and
DASD-only log streams, see [Table 261 on page 851}

If you use a coupling facility, you can use a stand-alone model, such as the S/390°®
9674. Alternatively, you can use the integrated coupling migration facility (ICMF) to
provide the services of a coupling facility in an LPAR. This means that the coupling
facility and MVS are not failure-independent, thereby requiring the use of staging
data sets.

For additional advice and examples relating to performance and tuning for logging,
you are recommended to consult the following documents:

* The IBM Redbook Systems Programmer's Guide to: z/OS System Logger,
SG24-6898. This document provides a thorough explanation of the z/OS System
Logger, and explains how it should be set up for optimum performance with CICS
and other exploiters.

* The IBM Redpaper Performance Considerations and Measurements for CICS
and System Logger, REDP-3768. This document, which was written in support of
the above Redbook, supplies additional guidance on the interactions between
CICS and z/OS System Logger, provides examples of different CICS and System
Logger configurations, and demonstrates the tuning process.

* The IBM support document OS/390 Logger / CICS - Performance and Common
Problems, available from http://www.ibm.com/support/ (search for the title of the
support document). This document provides two presentations dealing with
performance evaluation and troubleshooting for CICS and z/OS System Logger.

© Copyright IBM Corp. 1983, 2011 339

Monitoring the logger environment

CICS collects statistics on the data written to each journal and log stream; this data
can be used to analyze the activity of a single region. However, because general
log streams can be shared across multiple MVS images, it can be more useful to
examine the statistics generated by MVS.

The MVS system logger writes SMF Type 88 records containing statistics for each
connected log stream. MVS supplies in SYS1.SAMPLIB a sample reporting
program, IXGRPT1, that you can use as supplied, or modify to meet your
requirements. Alternatively, you could use some other SMF reporting program. For
information about the SMF Type 88 records and the sample reporting program, see
the |z/OS MVS System Management Facilities (SMFj manual.

The main items that should be monitored routinely are:
* For coupling facility log streams, the number of “structure full” events
* For DASD-only log streams, the number of “staging data set full” events.

If these events occur frequently, this indicates that the logger cannot write data to
secondary storage quickly enough to keep up with incoming data, which causes
CICS to wait before it can write more data. Consider the following solutions to
resolve such problems:

* Increase the size of primary storage (that is, the size of the coupling facility
structure or, for a DASD-only log stream, the size of the staging data set), in
order to smooth out spikes in logger load.

* Reduce the data writt